Skip to main content
Log in

α-Amylases from Microbial Sources and Its Potential Applications in Various Industries

  • Review
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Amylases are widely distributed and are one of the most studied enzymes. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The microbial source of amylase is preferred to other sources because of its plasticity and vast availability. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the isolation, substrates of α-amylases, production of bacterial and fungal α-amylases, properties of α-amylases, and the use of these enzymes in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kathiresan K, Manivannana S (2006) α-Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr J Biotechnol 5(10):829–832

    Google Scholar 

  2. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  Google Scholar 

  3. van der Marc Maarel, van der Veen Bart, Joost CM, Hans Uitdehaag, Leemhuis L, Dijkhuizen (2002) Properties and applications of starch converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  Google Scholar 

  4. Chai YY, Rahman RN, Illias RM, Goh KM (2012) Cloning and characterization of two new thermostable and alkalitolerant α-amylases from the Anoxybacillus species that produce high levels of maltose. J Ind Microbiol Biotechnol 39:731–741

    Article  Google Scholar 

  5. Anitha G, Muralikrighna G (2009) α-Amylase: structure and function relationship. Trends Carbohydr Res 1(4):1–11

    Google Scholar 

  6. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: biotechnological perspective. Process Biochem 38:1599–1616

    Article  Google Scholar 

  7. Sasi A, Baghyaraj R, Yogananth N, Chanthuru A, Ravikumar M (2008) Production of α-amylase in submerged fermentation by using Bacillus sp. Res J Biol Sci 1:50–57

    Google Scholar 

  8. Sivaramakrishnan S, Gangadharan V, Nampoothiri KM, Soccol CR, Pandey A (2006) α-Amylases from microbial sources—overview on recent developments. Food Technol Biotechnol 44(2):173–184

    Google Scholar 

  9. Lonsane BK, Ramesh MV (1990) Production of bacterial thermostable α-amylase by solid-state fermentation: potential tool for achieving economy in enzyme production and starch hydrolysis. Adv Appl Microbiol 35:1–56

    Article  Google Scholar 

  10. Abu EA, Ado SA, James DB (2005) Raw starch degrading amylase production by mixed culture of Aspergillus niger and Saccharomyces cerevisiae grown on sorghum pomace. Afr J Biotechnol 4:785–790

    Google Scholar 

  11. Asgher M, Javaid M, Asad S, Rahman U, Legg RL (2007) Thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng 79:950–955

    Article  Google Scholar 

  12. Hema A, Ujjval T, Kamlesh P (2006) Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Department of Biosciences, Patel University, Vidyanagar, pp 120–388

    Google Scholar 

  13. Joel EL, Bhimba BV (2012) Production of α-amylase by mangrove associated fungi Pestalotiopsis microspora strain VB5 and Aspergillus oryzae strain VBZ. Indian J Geo Marine Sci 41(3):279–283

    Google Scholar 

  14. Pandey S, Singh SP (2012) Organic solvent tolerance of α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations. Appl Biochem Biotechnol 166:1747–1757

    Article  Google Scholar 

  15. Kadziola A, Sogaard M, Svensson B, Haser R (1998) Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217

    Article  Google Scholar 

  16. Machius M, Wiegand G, Huber R (1995) Crystal structure of calcium depleted Bacillus licheniformis α-amylase. J Mol Biol 246:545–559

    Article  Google Scholar 

  17. Upadek H, Kottwitz B (1997) Surfactant science series: application of amylase in detergents. In: Ee JH, Misset O, Baas ET (eds) Enzymes in detergency. Marcel Dekker, New York, pp 203–212

    Google Scholar 

  18. Khan JA, Briscoe S (2011) Study on partial purification and characterization of extracellular alkaline amylase from Bacillus megaterium BY solid state fermentation. Int J Appl Biol Pharma Technol 2:3

    Google Scholar 

  19. Horikoshi K (1999) Alkaliphiles: some applications of their products for the Biotechnology. Microbiol Mol Biol Rev 63:735–750

    Google Scholar 

  20. Horikoshi K (1971) Production of alkaline enzyme by alkaliphilic microorganisms: alkaline amylase produced by Bacillus No. 221. Agric Biol Chem 35:1783–1791

    Article  Google Scholar 

  21. Kaur P, Vyas A (2012) Characterization and optimal production of alkaline α-amylase from Bacillus sp. DLB 9. Afr J Microbiol Res 6(11):2674–2681

    Google Scholar 

  22. Yang H, Liu L, Li J, Du G, Chen J (2011) Heterologous expression, biochemical characterization and overproduction alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. Microb Cell Fact 10:77

    Article  Google Scholar 

  23. Walia A, Mehta P, Chauhan A, Shirkot CK (2012) Optimization of cellulase free xylanase production by alkalophilic Cellulosimicrobium cellulans strain CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol. doi:10.1007/s13213-012-0460-5

    Google Scholar 

  24. Vasant KV (2010) Purification and properties of thermostable α-amylase from Acremonium sporosulcatum. Int J Biotecnol Biochem 6:25–34

    Google Scholar 

  25. Yaras A, Veyis S, Dursun O (2011) Production of α-amylase in semi solid substrate fermentation by Bacillus amyloliquefaciens. Curr Opin Biotechnol 10:1016

    Google Scholar 

  26. Haddaoui E, Chambert R, Petit-Glatron MF, Lindy O, Sarvas M (1999) Bacillus subtilis α-amylase: the rate limiting step of secretion is growth phase-independent. FEMS Microbiol Lett 173:127–131

    Google Scholar 

  27. Hamilton LM, Fogarty WM, Kelly CT (1999) Purification and properties of the raw starch degrading α-amylase of Bacillus sp. IMD 434. Biotechnol Lett 21:111–115

    Article  Google Scholar 

  28. Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid state fermentation in biotechnology: fundamentals and applications. Asia Tech Publishers Inc., New Delhi, pp 3–7

    Google Scholar 

  29. Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 100(2):168–171

    Article  Google Scholar 

  30. Bhattacharya S, Bhardwaj S, Das A, Anand S (2011) Utilization of sugarcane bagasse for solid-state fermentation and characterization of α-Amylase from Aspergillus flavus isolated from Muthupettai mangrove, Tamil Nadu, India. Aust J Basic Appl Sci 5(12):1012–1022

    Google Scholar 

  31. Suganthi R, Benazir JF, Santhi R, Ramesh Kumar V, Hari Anjana, Meenakshi Nitya, Nidhiya KA, Kavitha G, Lakshmi R (2011) Amylase production by Aspergillus Niger under solid state fermentation using agroindustrial wastes. Int J Eng Sci Technol 3(2):1756–1763

    Google Scholar 

  32. Dharania G, Kumaran NS (2012) Amylase Production from solid state fermentation and submerged liquid fermentation by Aspergillus niger. Bangladesh J Sci Ind Res 47(1):99–104

    Google Scholar 

  33. Baysal Z, Uyar F, Aytekin C (2003) Solid-state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem 38:1665–1668

    Article  Google Scholar 

  34. Ikram-ul-Haq, Ashraf H, Iqbal J, Qadeer MA (2003) Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresour Technol 38:8757–8761

    Google Scholar 

  35. Imran M, Asad MJ, Gulfraz M, Mehboob N, Jabeen N, Hadri SH, Irfan M, Anwar Z, Ahmed D (2011) Hyper production of glucoamylase by Aspergillus niger through chemical mutagenesis. Int J Phy Sci 6(26):6179–6190

    Google Scholar 

  36. Muhammad I, Anwar Z, Gulfraz M, Butt H, Ejaz A, Nawaj H (2012) Purification and characterization of α-amylase from Ganoderma tsugae growing in waste bread medium. Afr J Biotechnol 11(33):8288–8294

    Google Scholar 

  37. Ramesh MV, Lonsane BK (1991) Ability of a solid-state fermentation technique to significantly minimize catabolic repression of a-amylase production by Bacillus licheniformis M27. Appl Microbiol Biotechnol 35:591–593

    Article  Google Scholar 

  38. Babu KR, Satyanarayana T (1995) α-Amylase production by thermophilic Bacillus coagulans in solid-state fermentation. Process Biochem 30:305–309

    Google Scholar 

  39. Carlsen M, Spohr AB, Nielsen J, Villadsen J (1996) Morphology and physiology of α-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 49:266–276

    Article  Google Scholar 

  40. Spendler T, Jørgensen O (1997) Use of a branching enzyme in baking. Patent application WO97/41736

  41. Bruinenberg PM, Hulst AC, Faber A, Voogd RH (1996) Process for surface sizing or coating of paper. European patent application EP 0 690 170 A1

  42. Hendriksen HV, Pedersen S, Bisgard-Frantzen H (1999) Process for textile warp sizing using enzymatically modified starches. Patent application WO 99/35325

  43. Vieille K, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms of thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  Google Scholar 

  44. Vihinen M, Mantsala P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418

    Article  Google Scholar 

  45. Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP (1994) Purification, properties and structural aspects of a thermoacidophilic α-amylase from Alicyclobacillus acidocaldarius ATCC 27009 insight into acidostability of proteins. Eur J Biochem 226:981–991

    Article  Google Scholar 

  46. Hassan S, Naderi-Manesh H, Khajeh K, Ahmadvand R, Ranjbar B, Asoodeh A, Moradian F (2005) Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 36:666–671

    Article  Google Scholar 

  47. Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC (1995) Purification and characterization of a maltotetraose forming alkaline amylase from an alkalophilic Bacillus sp. GM8901. Appl Environ Microbiol 61:3105–3112

    Google Scholar 

  48. Khajeh K, Shokri MM, Asghari SM, Moradian F, Ghasemi A, Sadeghi M, Ranjbar B, Hosseinkhani S, Gharavi S, Naderi-Manesh H (2006) Acidic and proteolytic digestion of α-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: stability and flexibility analysis. Enzyme Microb Technol 38:422–428

    Article  Google Scholar 

  49. Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 38:1397–1403

    Article  Google Scholar 

  50. Mohamed Saleh A, Azhar Esam I, Ba-Akdah Morooj M, Tashkandy Nisreen R, Kumosanil Taha A (2011) Production, purification and characterization of α-amylase from Trichoderma harzianum grown on mandarin peel. Afr J Microbiol Res 5(9):1018–1028

    Article  Google Scholar 

  51. Emmanuel L, Janecek S, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 26:3–14

    Article  Google Scholar 

  52. Elayaraja ST, Velvizhi V, Maharani P, Mayavu SV, Balasubramanian T (2011) Thermostable α-amylase production by Bacillus firmus CAS 7 using potato peel as a substrate. Afr J Biotechnol 10(54):11235–11238

    Google Scholar 

  53. Khwaja S, Prasad R, Kumar S, Visavadia MD (2011) Isolation of soil thermophilic strains of actinomycetes for the production of α-amylase. Afr J Biotechnol 10(77):17831–17836

    Google Scholar 

  54. Kobayashi T, Kamekura M, Kanlayakrit W, Ohnishi H (1986) Production, purification and characterization of an amylase from the moderate halophile Micrococcus varians subspecies halophilus. Microbios 46:165

    Google Scholar 

  55. Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71

    Google Scholar 

  56. Bush DS, Sticher L, Huystee RV, Wagner D, Jones RL (1989) Calcium requirement for stability and enzymatic activity of two isoforms of barley aleuron alpha amylase. J Biol Chem 264:19392–19398

    Google Scholar 

  57. Nielsen Anders D, Fuglsang Claus C, Westh Peter (2003) Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus α-amylase: calorimetric investigation. Biochem J 373:337–343

    Article  Google Scholar 

  58. Atsushi T, Eiichi H (2002) Calcium-binding parameter of Bacillus amyloliquefaciens α-amylase determined by inactivation kinetics. Biochem J 364:635–639

    Article  Google Scholar 

  59. Goyal N, Gupta JK, Soni SK (2005) Novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 37:723–734

    Article  Google Scholar 

  60. Heinen W, Lauwers AM (1975) Amylase activity and stability at high and low temperature depending on calcium and other divalent cations. Experientia 26:77

    Article  Google Scholar 

  61. Robyt J, French D (1963) Action pattern and specificity of an amylase from Bacillus subtilis. Arch Biochem Biophys 100:451–467

    Article  Google Scholar 

  62. Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993) Purification and characterization of an extremely thermostable α-amylase from hypothermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 993(268):24394–24401

    Google Scholar 

  63. Malhotra R, Noorvez SM, Satyanarayana T (2000) Production and partial characterization of thermostable and calcium independent alpha amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett Appl Microbiol 31:378–384

    Article  Google Scholar 

  64. Yang CH, Liu WH (2004) Purification and properties of a maltotriose producing α-amylase from Thermobifida fusca. Enzyme Microb Technol 35:254–260

    Article  Google Scholar 

  65. Najafi MF, Kembhavi A (2005) One-step purification and characterization of an extracellular α-amylase from marine Vibrio sp. Enzyme Microb Technol 36:535–539

    Article  Google Scholar 

  66. Shigechi H, Fujita Y, Koh J, Ueda M, Fukuda H, Kondo A (2004) Energy saving direct ethanol production from low temperature cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem Eng J 18:149–153

    Article  Google Scholar 

  67. Kumar DJ, Jayanthisiddhuraj M, Monica DD, Naganarayani K, Immaculate A, Rebecca N, Kalaichelvan PT (2012) Concomitant production of α-amylase and β-galactosidase by native Bacillus sp. MNJ23 isolated from dairy effluent. Am Eurasian J Agric Environ Sci 12(5):579–587

    Google Scholar 

  68. Thippeswamy S, Girigowda K, Mulimani VH (2006) Isolation and identification of α-amylase producing Bacillus sp. from dhal industry waste. Indian J Biochem Biophys 43:295–298

    Google Scholar 

  69. Acourene S, Ammouche A (2012) Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. J India Microbiol Biotechnol 39:759–766

    Article  Google Scholar 

  70. Ganiyu O (2005) Isolation and characterization of amylase from fermented cassava (Manihot esculenta Crantz) wastewater. Afr J Biotechnol 4(10):1117–1123

    Google Scholar 

  71. Domingues CM, Peralta RM (1993) Production of amylase by soil fungi and partial biochemical characterization of amylase of a selected strain Aspergillus fumigatus Fresenius. Can J Microbiol 39:681–685

    Article  Google Scholar 

  72. Arnesen S, Eriksen SH, Olsen J, Jensen B (1998) Increased production of alpha amylase from Thermomyces lanuginosus by the addition of Tween-80. Enzyme Microb Technol 23:249–252

    Article  Google Scholar 

  73. Textor SD, Hill GA, Macdonald DG, Denis ESt (1998) Cold enzyme hydrolysis of wheat starch granules. Can J Chem Eng 76:87–93

    Article  Google Scholar 

  74. Robertson GH, Wong DWS, Lee CC, Wagschal K, Smith MR, Orts WJ (2006) Native or raw starch digestion: key step in energy efficient biorefining of grain. J Agric Food Chem 54:353–365

    Article  Google Scholar 

  75. Liao B, Hill GA, Roesler WJ (2012) Stable expression of barley α-amylase in S. cerevisiae for conversion of starch into bioethanol. Biochem Eng J 64:8–16

    Article  Google Scholar 

  76. Nielsen JE, Borchert TV (2000) Protein engineering of bacterial alpha-amylases. Biochem Biophys Acta 1543:253–274

    Article  Google Scholar 

  77. Prakash O, Jaiswal N (2010) Alpha-amylase: ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160(8):2401–2414

    Article  Google Scholar 

  78. Mukherjee AK, Borah M, Rai SK (2009) To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations. Biochem Eng J 43:149–156

    Article  Google Scholar 

  79. Olsen HSO, Falholt P (1998) Role of Enzymes in Modern Detergency. J Surfactants Deterg 1:555–567

    Article  Google Scholar 

  80. Hmidet N, El-Hadj Ali N, Haddar A, Kanoun S, Alya S, Nasri M (2009) Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 47:71–79

    Article  Google Scholar 

  81. Mitidieri S, Souza Martinelli AH, Schrank A, Vainstein MH (2006) Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresour Technol 97:1217–1224

    Article  Google Scholar 

  82. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  Google Scholar 

  83. Ahlawat S, Dhiman SS, Battan B, Mandhan RP, Sharma J (2009) Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 44:521–526

    Article  Google Scholar 

  84. Feitkenhauer H (2003) Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb Technol 33:250–258

    Article  Google Scholar 

  85. Saxena RK, Malhotra B, Batra A (2004) Commercial importance of some fungal enzymes. In: Arora DK (ed) Handbook of fungal biotechnology. Marcel Dekker, New York, pp 287–298

    Google Scholar 

  86. Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry—review. J Food Eng 76:291–302

    Article  Google Scholar 

  87. Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42:577–587

    Article  Google Scholar 

  88. Gavrilescu M, Chisti Y (2005) Biotechnology-sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, N., Walia, A. & Gaur, A. α-Amylases from Microbial Sources and Its Potential Applications in Various Industries. Natl. Acad. Sci. Lett. 36, 9–17 (2013). https://doi.org/10.1007/s40009-012-0104-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-012-0104-0

Keywords

Navigation