Skip to main content

Advertisement

Log in

Lipid testing in infectious diseases: possible role in diagnosis and prognosis

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Introduction

Acute infections lead to significant alterations in metabolic regulation including lipids and lipoproteins, which play a central role in the host immune response. In this regard, several studies have investigated the role of lipid levels as a marker of infection severity and prognosis.

Scope of review

We review here the role of lipids in immune response and the potential mechanisms underneath. Moreover, we summarize studies on lipid and lipoprotein alterations in acute bacterial, viral and parasitic infections as well as their diagnostic and prognostic significance. Chronic infections (HIV, HBV, HCV) are also considered.

Results

All lipid parameters have been found to be significantly dearranged during acute infection. Common lipid alterations in this setting include a decrease of total cholesterol levels and an increase in the concentration of triglyceride-rich lipoproteins, mainly very low-density lipoproteins. Also, low-density lipoprotein cholesterol, apolipoprotein A1, low-density lipoprotein cholesterol and apolipoprotein-B levels decrease. These lipid alterations may have prognostic and diagnostic role in certain infections.

Conclusion

Lipid testing may be of help to assess response to treatment in septic patients and those with various acute infections (such as pneumonia, leptospirosis and others). Diagnostically, new onset of altered lipid levels should prompt the clinician to test for underlying infection (such as leishmaniasis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Piepoli MF, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis. 2016;252:207–74.

    Article  CAS  PubMed  Google Scholar 

  2. Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med. 2007;33:25–35.

    Article  CAS  PubMed  Google Scholar 

  3. Gallin JI, Kaye D, O’Leary WM. Serum lipids in infection. N Engl J Med. 1969;281:1081–6.

    Article  CAS  PubMed  Google Scholar 

  4. Grunfeld C, et al. Lipoproteins inhibit macrophage activation by lipoteichoic acid. J Lipid Res. 1999;40:245–52.

    CAS  PubMed  Google Scholar 

  5. Alvarez C, Ramos A. Lipids, lipoproteins, and apoproteins in serum during infection. Clin Chem. 1986;32:142–5.

    CAS  PubMed  Google Scholar 

  6. Morin EE, et al. HDL in sepsis—risk factor and therapeutic approach. Front Pharmacol. 2015;6:244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pirillo A, Catapano AL, Norata GD. HDL in infectious diseases and sepsis. Handb Exp Pharmacol. 2015;224:483–508.

    Article  CAS  PubMed  Google Scholar 

  8. Muramoto G, et al. Lipid profiles of children and adolescents with inflammatory response in a paediatric emergency department. Ann Med. 2016;48:323–9.

    Article  CAS  PubMed  Google Scholar 

  9. Norata GD, Pirillo A, Catapano AL. HDLs, immunity, and atherosclerosis. Curr Opin Lipidol. 2011;22:410–6.

    Article  CAS  PubMed  Google Scholar 

  10. Florentin M, et al. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. 2008;23:370–8.

    Article  PubMed  Google Scholar 

  11. Pirillo A, Norata GD, Catapano AL. Treating high density lipoprotein cholesterol (HDL-C): quantity versus quality. Curr Pharm Des. 2013;19:3841–57.

    Article  CAS  PubMed  Google Scholar 

  12. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58:342–74.

    Article  CAS  PubMed  Google Scholar 

  13. Guo L, et al. High density lipoprotein protects against polymicrobe-induced sepsis in mice. J Biol Chem. 2013;288:17947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ulevitch RJ, Johnston AR, Weinstein DB. New function for high density lipoproteins. Isolation and characterization of a bacterial lipopolysaccharide-high density lipoprotein complex formed in rabbit plasma. J Clin Investig. 1981;67:827–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Nardo D, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 2014;15:152–60.

    Article  PubMed  CAS  Google Scholar 

  16. Plociennikowska A, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72:557–81.

    Article  CAS  PubMed  Google Scholar 

  17. Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379–414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  PubMed  Google Scholar 

  19. Castrillo A, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell. 2003;12:805–16.

    Article  CAS  PubMed  Google Scholar 

  20. Wehmeier KR, et al. Inhibition of ABCA1 protein expression and cholesterol efflux by TNF alpha in MLO-Y4 osteocytes. Calcif Tissue Int. 2016;98:586–95.

    Article  CAS  PubMed  Google Scholar 

  21. Park Y, Pham TX, Lee J. Lipopolysaccharide represses the expression of ATP-binding cassette transporter G1 and scavenger receptor class B, type I in murine macrophages. Inflamm Res. 2012;61:465–72.

    Article  CAS  PubMed  Google Scholar 

  22. Jerala R. Structural biology of the LPS recognition. Int J Med Microbiol. 2007;297:353–63.

    Article  CAS  PubMed  Google Scholar 

  23. Yao Z, et al. Blood-borne lipopolysaccharide is rapidly eliminated by liver sinusoidal endothelial cells via high-density lipoprotein. 2016;197:2390–9.

    CAS  Google Scholar 

  24. Han R. Plasma lipoproteins are important components of the immune system. Microbiol Immunol. 2010;54:246–53.

    Article  CAS  PubMed  Google Scholar 

  25. Cohen J. Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme. Br Med Bull. 1999;55:212–25.

    Article  CAS  PubMed  Google Scholar 

  26. Vishnyakova TG, et al. Binding and internalization of lipopolysaccharide by Cla-1, a human orthologue of rodent scavenger receptor B1. J Biol Chem. 2003;278:22771–80.

    Article  CAS  PubMed  Google Scholar 

  27. Levels JH, et al. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect Immun. 2003;71:3280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hosoai H, et al. Expression of serum amyloid A protein in the absence of the acute phase response does not reduce HDL cholesterol or apoA-I levels in human apoA-I transgenic mice. J Lipid Res. 1999;40:648–53.

    CAS  PubMed  Google Scholar 

  29. Feingold KR, Grunfeld C. The effect of inflammation and infection on lipids and lipoproteins. In: De Groot LJ, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.

    Google Scholar 

  30. Khovidhunkit W, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45:1169–96.

    Article  CAS  PubMed  Google Scholar 

  31. de la Llera Moya M, et al. Inflammation modulates human HDL composition and function in vivo. Atherosclerosis. 2012;222:390–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zewinger S, et al. Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur Heart J. 2015;36:3007–16.

    PubMed  Google Scholar 

  33. Clifton PM, Mackinnon AM, Barter PJ. Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoproteins in subjects with myocardial infarction. J Lipid Res. 1985;26:1389–98.

    CAS  PubMed  Google Scholar 

  34. Van Lenten BJ, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Investig. 1995;96:2758–67.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feingold KR, Grunfeld C. Obesity and dyslipidemia. In: De Groot LJ, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.

    Google Scholar 

  36. Levels JH, et al. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect Immun. 2005;73:2321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vreugdenhil AC, et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol. 2003;170:1399–405.

    Article  CAS  PubMed  Google Scholar 

  38. Flegel WA, et al. Prevention of endotoxin-induced monokine release by human low- and high-density lipoproteins and by apolipoprotein A-I. Infect Immun. 1993;61:5140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moorby CD, et al. Transforming growth factor-beta 1 and interleukin-1 beta stimulate LDL receptor activity in Hep G2 cells. Atherosclerosis. 1992;97:21–8.

    Article  CAS  PubMed  Google Scholar 

  40. Liao W, Floren CH. Tumor necrosis factor up-regulates expression of low-density lipoprotein receptors on HepG2 cells. Hepatology. 1993;17:898–907.

    Article  CAS  PubMed  Google Scholar 

  41. Topchiy E, et al. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLoS One. 2016;11:e0155030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang DW, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282:18602–12.

    Article  CAS  PubMed  Google Scholar 

  43. Walley KR. et al, PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6:258ra143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ruscica M, et al. Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line. J Biol Chem. 2016;291:3508–19.

    Article  CAS  PubMed  Google Scholar 

  45. Erqou S, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.

    Article  CAS  PubMed  Google Scholar 

  46. Ramharack R, Barkalow D, Spahr MA. Dominant negative effect of TGF-beta1 and TNF-alpha on basal and IL-6-induced lipoprotein(a) and apolipoprotein(a) mRNA expression in primary monkey hepatocyte cultures. Arterioscler Thromb Vasc Biol. 1998;18:984–90.

    Article  CAS  PubMed  Google Scholar 

  47. Wade DP, et al. 5′ control regions of the apolipoprotein(a) gene and members of the related plasminogen gene family. Proc Natl Acad Sci USA. 1993;90:1369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mooser V, et al. Major reduction in plasma Lp(a) levels during sepsis and burns. Arterioscler Thromb Vasc Biol. 2000;20:1137–42.

    Article  CAS  PubMed  Google Scholar 

  49. Liberopoulos E, et al. Severe hypocholesterolemia with reduced serum lipoprotein(a) in a patient with visceral leishmaniasis. Ann Clin Lab Sci. 2002;32:305–8.

    PubMed  Google Scholar 

  50. Barcia AM, Harris HW. Triglyceride-rich lipoproteins as agents of innate immunity. Clin Infect Dis. 2005;41:S498–503.

    Article  CAS  PubMed  Google Scholar 

  51. Feingold KR, et al. Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res. 1992;33:1765–76.

    CAS  PubMed  Google Scholar 

  52. Feingold KR, Grunfeld C. Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo. J Clin Investig. 1987;80:184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feingold KR, et al. Effect of endotoxin and cytokines on lipoprotein lipase activity in mice. Arterioscler Thromb. 1994;14:1866–72.

    Article  CAS  PubMed  Google Scholar 

  54. Grunfeld C, et al. Mechanisms by which tumor necrosis factor stimulates hepatic fatty acid synthesis in vivo. J Lipid Res. 1988;29:1327–35.

    CAS  PubMed  Google Scholar 

  55. Feingold KR, et al. Diet affects the mechanisms by which TNF stimulates hepatic triglyceride production. Am J Physiol. 1990;259:E177–84.

    CAS  PubMed  Google Scholar 

  56. Beylot M, et al. Regulation of ketone body flux in septic patients. Am J Physiol. 1989;257:E665–74.

    CAS  PubMed  Google Scholar 

  57. Memon RA, et al. Differential effects of interleukin-1 and tumor necrosis factor on ketogenesis. Am J Physiol. 1992;263:E301–9.

    CAS  PubMed  Google Scholar 

  58. Lu B, et al. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun. 2010;391:1737–41.

    Article  CAS  PubMed  Google Scholar 

  59. Aguiar C, et al. A review of the evidence on reducing macrovascular risk in patients with atherogenic dyslipidaemia: a report from an expert consensus meeting on the role of fenofibrate-statin combination therapy. Atheroscler Suppl. 2015;19:1–12.

    Article  PubMed  Google Scholar 

  60. Christoffersen C, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA. 2011;108:9613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ronsein GE, Vaisar T. Inflammation, remodeling, and other factors affecting HDL cholesterol efflux. Curr Opin Lipidol. 2017;28:52–9.

    Article  CAS  PubMed  Google Scholar 

  62. Funderburg NT, Mehta NN. Lipid abnormalities and inflammation in HIV inflection. Curr HIV/AIDS Rep. 2016;13:218–25.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chien JY, et al. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit Care Med. 2005;33:1688–93.

    Article  CAS  PubMed  Google Scholar 

  64. Barlage S, et al. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med. 2009;35:1877–85.

    Article  CAS  PubMed  Google Scholar 

  65. Vermont CL, et al. Serum lipids and disease severity in children with severe meningococcal sepsis. Crit Care Med. 2005;33:1610–5.

    Article  CAS  PubMed  Google Scholar 

  66. Fraunberger P, et al. Serum cholesterol levels in neutropenic patients with fever. Clin Chem Lab Med. 2002;40:304–7.

    Article  CAS  PubMed  Google Scholar 

  67. Zou G, et al. The delta high-density lipoprotein cholesterol ratio: a novel parameter for gram-negative sepsis. Springerplus. 2016;5:1044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Rodriguez-Sanz A, et al. High-density lipoprotein: a novel marker for risk of in-hospital infection in acute ischemic stroke patients? Cerebrovasc Dis. 2013;35:291–7.

    Article  CAS  PubMed  Google Scholar 

  69. Guirgis FW, et al. Cholesterol levels and long-term rates of community-acquired sepsis. Crit Care. 2016;20:408.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rodriguez Reguero JJ, et al. Variation in plasma lipid and lipoprotein concentrations in community-acquired pneumonia a six-month prospective study. Eur J Clin Chem Clin Biochem. 1996;34:245–9.

    CAS  PubMed  Google Scholar 

  71. Gruber M, et al. Prognostic impact of plasma lipids in patients with lower respiratory tract infections—an observational study. Swiss Med Wkly. 2009;139:166–72.

    CAS  PubMed  Google Scholar 

  72. Chien YF, et al. Decreased serum level of lipoprotein cholesterol is a poor prognostic factor for patients with severe community-acquired pneumonia that required intensive care unit admission. J Crit Care. 2015;30:506–10.

    Article  CAS  PubMed  Google Scholar 

  73. Apostolou F, et al. Persistence of an atherogenic lipid profile after treatment of acute infection with Brucella. J Lipid Res. 2009;50:2532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gazi IF, et al. Leptospirosis is associated with markedly increased triglycerides and small dense low-density lipoprotein and decreased high-density lipoprotein. Lipids. 2011;46:953–60.

    Article  CAS  PubMed  Google Scholar 

  75. Peces R. Acute renal failure in severe leptospirosis. Nephrol Dial Transplant. 2003;18:1235–6.

    Article  PubMed  Google Scholar 

  76. Liberopoulos E, Apostolou F, Elisaf M. Serum lipid profile in patients with severe leptospirosis. Nephrol Dial Transplant. 2004;19:1328–9 (author reply 1329–30).

    Article  PubMed  Google Scholar 

  77. Kim TJ, et al. Helicobacter pylori is associated with dyslipidemia but not with other risk factors of cardiovascular disease. Sci Rep. 2016;6:38015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Longo-Mbenza B, et al. Helicobacter pylori infection is identified as a cardiovascular risk factor in Central Africans. Vasc Health Risk Manag. 2012;6:455–61.

    Article  PubMed  CAS  Google Scholar 

  79. Calza L, et al. Clinical management of dyslipidaemia associated with combination antiretroviral therapy in HIV-infected patients. J Antimicrob Chemother. 2016;71:1451–65.

    Article  CAS  PubMed  Google Scholar 

  80. Negro F. Abnormalities of lipid metabolism in hepatitis C virus infection. Gut. 2010;59:1279–87.

    Article  CAS  PubMed  Google Scholar 

  81. Wang CC, Tseng TC, Kao JH. Hepatitis B virus infection and metabolic syndrome: fact or fiction? J Gastroenterol Hepatol. 2015;30:14–20.

    Article  CAS  PubMed  Google Scholar 

  82. Apostolou F, et al. Acute infection with Epstein–Barr virus is associated with atherogenic lipid changes. Atherosclerosis. 2010;212:607–13.

    Article  CAS  PubMed  Google Scholar 

  83. Fleck-Derderian S, McClellan W, Wojcicki JM. The association between cytomegalovirus infection, obesity, and metabolic syndrome in U.S. adult females. Obesity (Silver Spring). 2017;25:626–33.

    Article  Google Scholar 

  84. Biswas HH, et al. Lower low-density lipoprotein cholesterol levels are associated with severe dengue outcome. PLoS Negl Trop Dis. 2015;9:e0003904.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Faustino AF, et al. Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomedicine. 2014;10:247–55.

    Article  CAS  PubMed  Google Scholar 

  86. Non LR, Escota GV, Powderly WG. HIV and its relationship to insulin resistance and lipid abnormalities. Transl Res. 2017:183:41–56.

    Article  CAS  PubMed  Google Scholar 

  87. Constans J, et al. Plasma lipids in HIV-infected patients: a prospective study in 95 patients. Eur J Clin Investig. 1994;24:416–20.

    Article  CAS  Google Scholar 

  88. El-Sadr WM, et al. Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV Med. 2005;6:114–21.

    Article  CAS  PubMed  Google Scholar 

  89. Mujawar Z, et al. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol. 2006;4:e365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Shrivastav S, et al. Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor gamma and inhibits adipocyte differentiation: implications for HIV-associated lipodystrophy. Mol Endocrinol. 2008;22:234–47.

    Article  CAS  PubMed  Google Scholar 

  91. Gavrilova O, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003;278:34268–76.

    Article  CAS  PubMed  Google Scholar 

  92. Carr A, et al. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353:2093–9.

    Article  CAS  PubMed  Google Scholar 

  93. Dave JA, et al. Anti-retroviral therapy increases the prevalence of dyslipidemia in South African HIV-infected patients. PLoS One. 2016;11:e0151911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang Y, et al. The mechanism of apoliprotein A1 down-regulated by Hepatitis B virus. Lipids Health Dis. 2016;15:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhu C, et al. Hepatitis B virus inhibits apolipoprotein A5 expression through its core gene. Lipids Health Dis. 2016;15:178.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jarcuska P, et al. Association between hepatitis B and metabolic syndrome: current state of the art. World J Gastroenterol. 2016;22:155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kang SK, et al. The hepatitis B virus X protein inhibits secretion of apolipoprotein B by enhancing the expression of N-acetylglucosaminyltransferase III. J Biol Chem. 2004;279:28106–12.

    Article  CAS  PubMed  Google Scholar 

  98. Lucifora J, Esser K, Protzer U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antiviral Res. 2013;97:195–7.

    Article  CAS  PubMed  Google Scholar 

  99. Bassendine MF, et al. Lipids and HCV. Semin Immunopathol. 2013;35:87–100.

    Article  CAS  PubMed  Google Scholar 

  100. Domitrovich AM, Felmlee DJ, Siddiqui A. Hepatitis C virus nonstructural proteins inhibit apolipoprotein B100 secretion. J Biol Chem. 2005;280:39802–8.

    Article  CAS  PubMed  Google Scholar 

  101. Moriya K, et al. Serum lipid profile of patients with genotype 1b hepatitis C viral infection in Japan. Hepatol Res. 2003;25:371–6.

    Article  CAS  PubMed  Google Scholar 

  102. Rowell J, et al. Serum apolipoprotein C-III is independently associated with chronic hepatitis C infection and advanced fibrosis. Hepatol Int. 2012;6:475–81.

    Article  CAS  PubMed  Google Scholar 

  103. Huang H, et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci USA. 2007;104:5848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Podevin P, et al. Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology. 2010;139:1355–64.

    Article  CAS  PubMed  Google Scholar 

  105. Farquhar MJ, Harris HJ, McKeating JA. Hepatitis C virus entry and the tetraspanin CD81. Biochem Soc Trans. 2011;39:532–6.

    Article  CAS  PubMed  Google Scholar 

  106. Le QT, et al. Plasma membrane tetraspanin CD81 complexes with proprotein convertase subtilisin/kexin type 9 (PCSK9) and low density lipoprotein receptor (LDLR), and its levels are reduced by PCSK9. J Biol Chem. 2015;290:23385–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Oliveira C, et al. Apolipoprotein(a) inhibits hepatitis C virus entry through interaction with infectious particles. Hepatology. 2017. doi:10.1002/hep.29096

    PubMed Central  Google Scholar 

  108. Agouridis AP, et al. New-onset extremely low levels of high-density lipoprotein cholesterol. J Clin Lipidol. 2012;6:593–5.

    Article  PubMed  Google Scholar 

  109. Liberopoulos EN, et al. Visceral leishmaniasis is associated with marked changes in serum lipid profile. Eur J Clin Investig. 2014;44:719–27.

    Article  CAS  Google Scholar 

  110. Lal CS, et al. Hypertriglyceridemia: a possible diagnostic marker of disease severity in visceral leishmaniasis. Infection. 2016;44:39–45.

    Article  CAS  PubMed  Google Scholar 

  111. Flores MS, et al. Hypocholesterolemia in patients with an amebic liver abscess. Gut Liver. 2014;8:415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bansal D, Bhatti HS, Sehgal R. Altered lipid parameters in patients infected with Entamoeba histolytica, Entamoeba dispar and Giardia lamblia. Br J Biomed Sci. 2005;62:63–5.

    Article  CAS  PubMed  Google Scholar 

  113. Visser BJ, et al. Serum lipids and lipoproteins in malaria—a systematic review and meta-analysis. Malar J. 2013;12:442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Caldas IR, et al. Human schistosomiasis mansoni: immune responses during acute and chronic phases of the infection. Acta Trop. 2008;108:109–17.

    Article  CAS  PubMed  Google Scholar 

  115. Gryseels B. Schistosomiasis. Infect Dis Clin N Am. 2012;26:383–97.

    Article  Google Scholar 

  116. Yokoyama S, Okumura-Noji K, Lu R. Prevention of fatal hepatic complication in schistosomiasis by inhibition of CETP. J Biomed Res. 2015;29:176–88.

    PubMed  PubMed Central  Google Scholar 

  117. Rumjanek FD, Campos EG, Afonso LC. Evidence for the occurrence of LDL receptors in extracts of schistosomula of Schistosoma mansoni. Mol Biochem Parasitol. 1988;28:145–52.

    Article  CAS  PubMed  Google Scholar 

  118. Duchateau PN, et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. J Biol Chem. 1997;272:25576–82.

    Article  CAS  PubMed  Google Scholar 

  119. Tada H, Kawashiri MA, Yamagishi M. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants. J Hum Genet. 2017;62:453–58.

    Article  CAS  PubMed  Google Scholar 

  120. Moutzouri E, Elisaf M, Liberopoulos EN. Hypocholesterolemia. Curr Vasc Pharmacol. 2011;9:200–12.

    Article  CAS  PubMed  Google Scholar 

  121. Devaud JC, et al. Does the type of parenteral lipids matter? A clinical hint in critical illness. Clin Nutr. 2017;36:491–96.

    Article  CAS  PubMed  Google Scholar 

  122. Fattore E, et al. Effects of free sugars on blood pressure and lipids: a systematic review and meta-analysis of nutritional isoenergetic intervention trials. Am J Clin Nutr. 2017;105:42–56.

    Article  CAS  PubMed  Google Scholar 

  123. Druml W, et al. Lipid metabolism in acute renal failure. Kidney Int Suppl. 1983;16:S139–42.

    CAS  PubMed  Google Scholar 

  124. Etogo-Asse FE, et al. High density lipoprotein in patients with liver failure; relation to sepsis, adrenal function and outcome of illness. Liver Int. 2012;32:128–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Liberopoulos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest relevant to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippas-Ntekouan, S., Liberopoulos, E. & Elisaf, M. Lipid testing in infectious diseases: possible role in diagnosis and prognosis. Infection 45, 575–588 (2017). https://doi.org/10.1007/s15010-017-1022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1022-3

Keywords

Navigation