Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1412))

Abstract

Current biomarkers to assess the risk of complications of both acute and chronic viral infection are suboptimal. Prevalent viral infections like human immunodeficiency virus (HIV), hepatitis B and C virus, herpes viruses, and, more recently, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may be associated with significant sequelae including the risk of cardiovascular disease, other end-organ diseases, and malignancies. This review considers some biomarkers which have been investigated in diagnosis and prognosis of key viral infections including inflammatory cytokines, markers of endothelial dysfunction and activation and coagulation, and the role that more conventional diagnostic markers, such as C-reactive protein and procalcitonin, can play in predicting these secondary complications, as markers of severity and to distinguish viral and bacterial infection. Although many of these are still only available in the research setting, these markers show promise for incorporation in diagnostic algorithms which may assist to predict adverse outcomes and to guide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smit M, van Zoest RA, Nichols BE, et al. (2018) Cardiovascular Disease Prevention Policy in Human Immunodeficiency Virus: Recommendations From a Modeling Study. Clin Infect Dis 66(5):743–50

    Article  CAS  PubMed  Google Scholar 

  2. McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol 37:457–495

    Article  CAS  PubMed  Google Scholar 

  3. Kumar D, Rostad CA, Jaggi P, et al (2022) Distinguishing immune activation and inflammatory signatures of multisystem inflammatory syndrome in children (MIS-C) versus hemophagocytic lymphohistiocytosis (HLH). J Allergy Clin Immunol 149(5):1592–606.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diorio C, Henrickson SE, Vella LA, et al (2020) Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest 130(11):5967–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He F, Quan Y, Lei M, et al (2020) Clinical features and risk factors for ICU admission in COVID-19 patients with cardiovascular diseases. Aging Dis 11(4):763–769

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bao J, Li C, Zhang K, et al (2020) Comparative analysis of laboratory indexes of severe and non-severe patients infected with COVID-19. Clin Chim Acta 509:180–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson ED, Schell JC, Rodgers GM (2019) The D-dimer assay. Am J Hematol 94(7):833–839

    PubMed  Google Scholar 

  8. Henry BM, de Oliveira MHS, Benoit S, et al (2020) Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med 58(7):1021–1028

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, He L, Li S, et al (2019) Combination of procalcitonin and C-reactive protein levels in the early diagnosis of bacterial co-infections in children with H1N1 influenza. Influenza Other Respir Viruses 13(2):184–190

    Article  CAS  PubMed  Google Scholar 

  10. Thachil J, Tang N, Gando S, et al (2020) ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 18(5):1023–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iba T, Umemura Y, Wada H, Levy JH (2021) Roles of Coagulation Abnormalities and Microthrombosis in Sepsis: Pathophysiology, Diagnosis, and Treatment. Arch Med Res 52(8):788–797

    Article  CAS  PubMed  Google Scholar 

  12. Wada H, Matsumoto T, Yamashita Y (2014) Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care 2(1):15. https://doi.org/10.1186/2052-0492-2-15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan S, Jiang SC, Zhang ZW, et al (2021) Quantification of Cytokine Storms During Virus Infections. Front Immunol 12:659419. https://doi.org/10.3389/fimmu.2021.659419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chousterman BG, Swirski FK, Weber GF (2017) Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 39(5):517–528

    Article  CAS  PubMed  Google Scholar 

  15. Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG (2022) The IL-1 cytokine family as custodians of barrier immunity. Cytokine 154:155890. https://doi.org/10.1016/j.cyto.2022.155890

    Article  CAS  PubMed  Google Scholar 

  16. Rezk MF, Pieper B (2020) Unlocking the Value of Anti-TNF Biosimilars: Reducing Disease Burden and Improving Outcomes in Chronic Immune-Mediated Inflammatory Diseases: A Narrative Review. Adv Ther 37(9):3732–3745

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kang S, Narazaki M, Metwally H, Kishimoto T (2020) Historical overview of the interleukin-6 family cytokine. J Exp Med 217(5). https://doi.org/10.1084/jem.20190347

  18. Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol. 2018;10(2). https://doi.org/10.1101/cshperspect.a028415

  19. Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1):49–46

    Article  CAS  PubMed  Google Scholar 

  20. Pretre V, Papadopoulos D, Regard J, Pelletier M, Woo J. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine. 2022;153:155850. https://doi.org/10.1016/j.cyto.2022.155850

    Article  CAS  PubMed  Google Scholar 

  21. Paniri A, Akhavan-Niaki H (2020) Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat COVID-19: Role of lncRNAs in cytokine storm modulation. Life Sci 257:118114. https://doi.org/10.1016/j.lfs.2020.118114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayne ES, George JA (2017) Mortal allies: human immunodeficiency virus and noncommunicable diseases. Curr Opin HIV AIDS 12(2):148–156

    Article  PubMed  Google Scholar 

  23. Morris VA, Punjabi AS, Wells RC, et al (2012) The KSHV viral IL-6 homolog is sufficient to induce blood to lymphatic endothelial cell differentiation. Virology 428(2):112–120

    Article  CAS  PubMed  Google Scholar 

  24. Roberts WL, CDC, AHA (2004) CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: laboratory tests available to assess inflammation--performance and standardization: a background paper. Circulation 110(25):e572–576

    Google Scholar 

  25. Van Den Eeckhout B, Tavernier J, Gerlo S (2020) Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol. 2020;11:621931. https://doi.org/10.3389/fimmu.2020.621931

    Article  CAS  PubMed  Google Scholar 

  26. Wu ZB, Zheng YB, Wang Ket al (2021) Plasma Interleukin-6 Level: A Potential Prognostic Indicator of Emergent HBV-Associated ACLF. Can J Gastroenterol Hepatol 2021:5545181. https://doi.org/10.1155/2021/5545181

  27. Koshiol J, Argirion I, Liu Z, et al (2021) Immunologic markers and risk of hepatocellular carcinoma in hepatitis B virus- and hepatitis C virus-infected individuals. Aliment Pharmacol Ther 54(6):833–842

    Article  CAS  PubMed  Google Scholar 

  28. Barbier L, Ferhat M, Salame E, et al (2019) Interleukin-1 Family Cytokines: Keystones in Liver Inflammatory Diseases. Front Immunol 10:2014. https://doi.org/10.3389/fimmu.2019.02014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wekesa C, Kirk GD, Aizire J, et al (2020) Prevalence and Factors Associated With Liver Fibrosis Among Adult HIV-Infected Patients Attending Urban and Rural Care Clinics in Uganda. Open Forum Infect Dis 7(11):ofaa483. https://doi.org/10.1093/ofid/ofaa483

  30. Borges AH, O’Connor JL, Phillips AN, et al (2016) Interleukin 6 Is a Stronger Predictor of Clinical Events Than High-Sensitivity C-Reactive Protein or D-Dimer During HIV Infection. J Infect Dis 214(3):408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borges AH, O’Connor JL, Phillips AN, et al (2015) Factors Associated With Plasma IL-6 Levels During HIV Infection. J Infect Dis 212(4):585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fazal F, Gupta N, Mittal A, Ray A (2020) Haemophagocytic lymphohistiocytosis in human immunodeficiency virus: a systematic review of literature. Drug Discov Ther 14(5):226–231

    Article  CAS  PubMed  Google Scholar 

  33. Lokau J, Schoeder V, Haybaeck J, Garbers C (2019) Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel) 11(11):1704. https://doi.org/10.3390/cancers11111704

    Article  CAS  PubMed  Google Scholar 

  34. Looi CK, Hii LW, Chung FF, et al (2021) Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 13(8). https://doi.org/10.3390/cancers13081786

  35. Ohashi A, Uemura Y, Yoshimori M, et al (2022) The Plasma Level of Interleukin-1beta Can Be a Biomarker of Angiopathy in Systemic Chronic Active Epstein-Barr Virus Infection. Front Microbiol 13:874998. https://doi.org/10.3389/fmicb.2022.874998

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lurain K, Polizzotto MN, Aleman K, et al (2019) Viral, immunologic, and clinical features of primary effusion lymphoma. Blood 133(16):1753–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fevang B, Wyller VBB, Mollnes TE, et al (2021) Lasting Immunological Imprint of Primary Epstein-Barr Virus Infection With Associations to Chronic Low-Grade Inflammation and Fatigue. Front Immunol 12:715102. https://doi.org/10.3389/fimmu.2021.715102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen CC, Liu HP, Chao M, et al (2014) NF-kappaB-mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene 33(28):3648–3659

    Article  CAS  PubMed  Google Scholar 

  39. Munz C (2021) The Role of Lytic Infection for Lymphomagenesis of Human gamma-Herpesviruses. Front Cell Infect Microbiol 11:605258. https://doi.org/10.3389/fcimb.2021.605258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mehta P, Cron RQ, Hartwell J, et al (2020) Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol 2(6):e358-e367

    Article  PubMed  PubMed Central  Google Scholar 

  41. Griffin G, Shenoi S, Hughes GC (2020) Hemophagocytic lymphohistiocytosis: An update on pathogenesis, diagnosis, and therapy. Best Pract Res Clin Rheumatol 34(4):101515. https://doi.org/10.1016/j.berh.2020.101515

    Article  PubMed  Google Scholar 

  42. Sakakibara S, Tosato G (2011) Viral interleukin-6: role in Kaposi’s sarcoma-associated herpesvirus: associated malignancies. J Interferon Cytokine Res 31(11):791–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Polizzotto MN, Uldrick TS, Wyvill KM, et al (2016) Clinical Features and Outcomes of Patients With Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS). Clin Infect Dis 62(6):730–738

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Del Valle L, Lin HY, et al (2019) Expression of PD-1 and PD-Ls in Kaposi’s sarcoma and regulation by oncogenic herpesvirus lytic reactivation. Virology 536:16–19

    Article  CAS  PubMed  Google Scholar 

  45. Polizzotto MN, Uldrick TS, Wang V, et al (2013) Human and viral interleukin-6 and other cytokines in Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Blood 122(26):4189–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrett L, Chen J, Dai L, et al (2020) Role of Interleukin-1 Family Members and Signaling Pathways in KSHV Pathogenesis. Front Cell Infect Microbiol 10:587929. https://doi.org/10.3389/fcimb.2020.587929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mittal R, Chourasia N, Bharti VK, et al (2022) Blood-based biomarkers for diagnosis, prognosis, and severity prediction of COVID-19: Opportunities and challenges. J Family Med Prim Care 11(8):4330–4341

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou F, Yu T, Du R, et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229):1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruan Q, Yang K, Wang W, et al (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46:846–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spaner C, Goubran M, Setiadi A, Chen LYC (2022) COVID-19, haemophagocytic lymphohistiocytosis, and infection-induced cytokine storm syndromes. Lancet Infect Dis 22(7):937–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leisman DE, Ronner L, Pinotti R, et al (2020) Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med 8(12):1233–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mazaheri T, Ranasinghe R, Al-Hasani W, et al (2022) A cytokine panel and procalcitonin in COVID-19, a comparison between intensive care and non-intensive care patients. PLoS One. 2022;17(5):e0266652. https://doi.org/10.1371/journal.pone.0266652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Basheer M, Saad E, Kananeh M, et al (2022) Cytokine Patterns in COVID-19 Patients: Which Cytokines Predict Mortality and Which Protect Against? Curr Issues Mol Biol 44(10):4735–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Queiroz MAF, Neves P, Lima SS, et al (2022) Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome. Front Cell Infect Microbiol 12:922422. https://doi.org/10.3389/fcimb.2022.922422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu T, Cho CH (2022) Cytokine Release Syndrome in Pathogenesis and Treatment of COVID-19. Curr Pharm Des 28(22):1779. https://doi.org/10.2174/138161282822220721121211

    Article  CAS  PubMed  Google Scholar 

  56. Frisoni P, Neri M, D’Errico S, et al (2022) Cytokine storm and histopathological findings in 60 cases of COVID-19-related death: from viral load research to immunohistochemical quantification of major players IL-1beta, IL-6, IL-15 and TNF-alpha. Forensic Sci Med Pathol 18(1):4–19

    Article  CAS  PubMed  Google Scholar 

  57. Tsagkaris C, Bilal M, Aktar I, et al (2022) Cytokine storm and neuropathological alterations in patients with neurological manifestations of COVID-19. Curr Alzheimer Res. https://doi.org/10.2174/1567205019666220908084559

  58. Zanza C, Romenskaya T, Manetti AC, et al (2022) Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (Kaunas) 58(2):144. https://doi.org/10.3390/medicina58020144

    Article  PubMed  Google Scholar 

  59. Kalinina O, Golovkin A, Zaikova E, et al (2022) Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int J Mol Sci 23(16):8879. https://doi.org/10.3390/ijms23168879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Obuchowska A, Standylo A, Obuchowska K, et al (2021) Cytokine Storms in the Course of COVID-19 and Haemophagocytic Lymphohistiocytosis in Pregnant and Postpartum Women. Biomolecules 11(8):1202. https://doi.org/10.3390/biom11081202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. George JA, Mayne ES (2021) The Novel Coronavirus and Inflammation. Adv Exp Med Biol 1321:127–138

    Article  CAS  PubMed  Google Scholar 

  62. Mayne ES, Louw S (2019) Good Fences Make Good Neighbors: Human Immunodeficiency Virus and Vascular Disease. Open Forum Infect Dis 6(11):ofz303. https://doi.org/10.1093/ofid/ofz303

  63. Ince C, Mayeux PR, Nguyen T, et al (2016) The Endothelium in Sepsis. Shock 45(3):259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mayne ES, Mayne ALH, Louw SJ (2018) Pathogenic factors associated with development of disseminated intravascular coagulopathy (DIC) in a tertiary academic hospital in South Africa. PLoS One 13(4):e0195793. https://doi.org/10.1371/journal.pone.0195793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL (2018) Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 180(6):782–798

    Article  PubMed  Google Scholar 

  66. Zhang L, Yan X, Fan Q, et al (2020) D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 18(6):1324–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Knobl P (2018) Thrombotic thrombocytopenic purpura. Memo 11(3):220–226

    PubMed  Google Scholar 

  68. Durandt C, Potgieter JC, Mellet J, et al (2019) HIV and haematopoiesis. S Afr Med J 109(8b):40–45

    Article  CAS  PubMed  Google Scholar 

  69. Wool GD, Miller JL (2021) The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology 88(1):15–27

    Article  CAS  PubMed  Google Scholar 

  70. Mezger M, Nording H, Sauter R, et al (2019) Platelets and Immune Responses During Thromboinflammation. Front Immunol 10:1731. https://doi.org/10.3389/fimmu.2019.01731

  71. Peck-Radosavljevic M (2017) Thrombocytopenia in chronic liver disease. Liver Int 37(6):778–793

    Article  PubMed  Google Scholar 

  72. Funderburg NT, Mayne E, Sieg SF, et al (2010) Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 115(2):161–167

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mayne E, Funderburg NT, Sieg SF, et al (2012) Increased platelet and microparticle activation in HIV infection: upregulation of P-selectin and tissue factor expression. J Acquir Immune Defic Syndr 59(4):340–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Donkel SJ, Wolters FJ, Ikram MA, de Maat MPM (2021) Circulating Myeloperoxidase (MPO)-DNA complexes as marker for Neutrophil Extracellular Traps (NETs) levels and the association with cardiovascular risk factors in the general population. PLoS One 16(8):e0253698. https://doi.org/10.1371/journal.pone.0253698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou J, Mao W, Shen L, Huang H (2019) Plasma D-dimer as a novel biomarker for predicting poor outcomes in HBV-related decompensated cirrhosis. Medicine (Baltimore) 98(52):e18527. https://doi.org/10.1097/MD.0000000000018527

    Article  CAS  PubMed  Google Scholar 

  76. O’Bryan TA, Agan BK, Tracy RP, et al (2018) Brief Report: Racial Comparison of D-Dimer Levels in US Male Military Personnel Before and After HIV Infection and Viral Suppression. J Acquir Immune Defic Syndr 77(5):502–506

    Article  PubMed Central  Google Scholar 

  77. Teasdale CA, Hernandez C, Zerbe A, et al (2020) Changes in D-dimer after initiation of antiretroviral therapy in adults living with HIV in Kenya. BMC Infect Dis 20(1):508. https://doi.org/10.1186/s12879-020-05213-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aranda F, Peres Wingeyer S, de Larranaga G (2016) D-Dimer as a prognostic marker of morbidity and mortality among HIV patients: a call for attention. Infect Dis (Lond) 48(11-12):860–861

    Article  PubMed  Google Scholar 

  79. Zhang H, Wu H, Pan D, Shen W (2022) D-dimer levels and characteristics of lymphocyte subsets, cytokine profiles in peripheral blood of patients with severe COVID-19: A systematic review and meta-analysis. Front Med (Lausanne) 9:988666. https://doi.org/10.3389/fmed.2022.988666

    Article  PubMed  Google Scholar 

  80. Go H, Nagano N, Katayama D, et al (2020) Diagnostic Accuracy of Biomarkers for Early-Onset Neonatal Bacterial Infections: Evaluation of Serum Procalcitonin Reference Curves. Diagnostics (Basel) 10(10):839. https://doi.org/10.3390/diagnostics10100839

    Article  CAS  PubMed  Google Scholar 

  81. Cals JW, Butler CC, Hopstaken RM, et al (2009) Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: cluster randomised trial. BMJ 338:b1374. https://doi.org/10.1136/bmj.b1374

    Article  PubMed  PubMed Central  Google Scholar 

  82. Devaraj S, Singh U, Jialal I (2009) The evolving role of C-reactive protein in atherothrombosis. Clin Chem 55(2):229–238

    Article  CAS  PubMed  Google Scholar 

  83. Tillett WS, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med 52:561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38(2-3):189–197

    Article  CAS  PubMed  Google Scholar 

  85. Calabro P, Chang DW, Willerson JT, Yeh ET (2005) Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. J Am Coll Cardiol 46(6):1112–1113

    Article  CAS  PubMed  Google Scholar 

  86. Pasceri V, Willerson JT, Yeh ET (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102(18):2165–2168

    Article  CAS  PubMed  Google Scholar 

  87. Devaraj S, Singh U, Jialal I (2009) The evolving role of C-reactive protein in atherothrombosis. Clin Chem 55(2):229–238

    Article  CAS  PubMed  Google Scholar 

  88. Khreiss T, Jozsef L, Potempa LA, Filep JG (2004) Opposing effects of C-reactive protein isoforms on shear-induced neutrophil-platelet adhesion and neutrophil aggregation in whole blood. Circulation 110(17):2713–2720

    Article  CAS  PubMed  Google Scholar 

  89. Black S, Kushner I, Samols D (2004) C-reactive Protein. J Biol Chem 279(47):48487–48490

    Article  CAS  PubMed  Google Scholar 

  90. Du Clos TW (2000) Function of C-reactive protein. Ann Med 32(4):274–278

    Article  PubMed  Google Scholar 

  91. Ridker PM, Buring JE, Rifai N, Cook NR (2007) Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 297(6):611–619

    Article  CAS  PubMed  Google Scholar 

  92. Ding S, Ma J, Song X, et al (2020) Diagnostic Accuracy of Procalcitonin, Neutrophil-to-Lymphocyte Ratio, and C-Reactive Protein in Detection of Bacterial Infections and Prediction of Outcome in Nonneutropenic Febrile Patients with Lung Malignancy. J Oncol 2020:2192378. https://doi.org/10.1155/2020/2192378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chan JF, Yuan S, Kok KH, et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395 (10223):514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Henry BM, Benoit SW, de Oliveira MHS, et al (2020) Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (COVID-19): A pooled analysis and review. Clin Biochem 81:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou F, Yu T, Du R, et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395 (10229):1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, et al (2020) Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS One 15(11):e0241742. https://doi.org/10.1371/journal.pone.0241742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mittal R, Chourasia N, Bharti VK, et al (2022) Blood-based biomarkers for diagnosis, prognosis, and severity prediction of COVID-19: Opportunities and challenges. J Family Med Prim Care 11(8):4330–4341

    Article  PubMed  PubMed Central  Google Scholar 

  98. Perschinka F, Mayerhofer T, Lehner GF, et al (2022) Immunologic response in bacterial sepsis is different from that in COVID-19 sepsis. Infection 50(4):1035–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li B, Yang J, Zhao F, et al (2020) Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 109(5):531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Waterfield T, Maney JA, Lyttle MD, et al (2020) Diagnostic test accuracy of point-of-care procalcitonin to diagnose serious bacterial infections in children. BMC Pediatr 20(1):487. https://doi.org/10.1186/s12887-020-02385-2

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fordjour PA, Wang Y, Shi Y, et al (2015) Possible mechanisms of C-reactive protein mediated acute myocardial infarction. Eur J Pharmacol 760:72–80

    Article  CAS  PubMed  Google Scholar 

  102. Wang JT, Sheng WH, Fang CT, et al (2004) Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg Infect Dis 10(5):818–824

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ko J-H, Park GE, Lee JY, et al (2016) Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. Journal of Infection 73(5):468–475

    Article  PubMed  Google Scholar 

  104. Zhang J, Zhao Y, Chen Y (2014) Laboratory findings in patients with avian-origin influenza A (H7N9) virus infections. J Med Virol 86(5):895–889

    Article  CAS  PubMed  Google Scholar 

  105. Vasileva D, Badawi A (2019) C-reactive protein as a biomarker of severe H1N1 influenza. Inflamm Res 68(1):39–46

    Article  CAS  PubMed  Google Scholar 

  106. Osibogun O, Ogunmoroti O, Michos ED, et al (2018) A systematic review of the associations between HIV/HCV coinfection and biomarkers of cardiovascular disease. Rev Med Virol. 28(1). https://doi.org/10.1002/rmv.1953

  107. National Institute for Clinical Excellence (NICE) (2015) Procalcitonin testing for diagnosing and monitoring sepsis (ADVIA Centaur BRAHMS PCT assay, BRAHMS PCT Sensitive Kryptor assay, Elecsys BRAHMS PCT assay, LIAISON BRAHMS PCT assay and VIDAS BRAHMS PCT assay). 2015. https://www.nice.org.uk/guidance/dg18/resources/procalcitonin-testing-for-diagnosing-and-monitoring-sepsis-advia-centaur-brahms-pct-assay-brahms-pct-sensitive-kryptor-assay-elecsys-brahms-pct-assay-liaison-brahms-pct-assay-and-vidas-brahms-pct-ass-pdf-1053636508357

  108. Tujula B, Hämäläinen S, Kokki H, et al (2020) Review of clinical practice guidelines on the use of procalcitonin in infections. Infect Dis (Lond) 52(4):227–234

    Article  CAS  PubMed  Google Scholar 

  109. Kumar A, Karn E, Trivedi K, et al (2022) Procalcitonin as a predictive marker in COVID-19: A systematic review and meta-analysis. PloS one 17(9):e0272840. https://doi.org/10.1371/journal.pone.0272840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Samsudin I, Vasikaran SD (2017) Clinical Utility and Measurement of Procalcitonin. Clin Biochem Rev 38(2):59–68

    PubMed  PubMed Central  Google Scholar 

  111. Matesanz JL, Fernandez E, Fernandez JM, Viejo G (2003) Plasma procalcitonin and C-reactive protein concentrations in pediatric patients with Epstein-Barr virus infection. Clin Chem 49(12):2103–2104

    Article  CAS  PubMed  Google Scholar 

  112. Pfister R, Kochanek M, Leygeber T, et al (2014) Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: a prospective cohort study, systematic review and individual patient data meta-analysis. Crit Care 18(2):R44. https://doi.org/10.1186/cc13760

    Article  PubMed  PubMed Central  Google Scholar 

  113. Haller O, Kochs G (2006) Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 31(1):79–87

    Article  Google Scholar 

  114. Nakabayashi M, Adachi Y, Itazawa T, et al (2006) MxA-based recognition of viral illness in febrile children by a whole blood assay. Pediatr Res 60:770–774

    Article  CAS  PubMed  Google Scholar 

  115. Engelmann I, Dubos F, Lobert PE, et al (2015) Diagnosis of viral infections using myxovirus resistance protein A (MxA). Pediatrics 135(4):e985–993

    Article  PubMed  Google Scholar 

  116. Self WH, Rosen J, Sharp SC, et al (2017) Diagnostic Accuracy of FebriDx: A Rapid Test to Detect Immune Responses to Viral and Bacterial Upper Respiratory Infections. J Clin Med 6(10):94 https://doi.org/10.3390/jcm6100094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yahya M, Rulli M, Toivonen L, et al (2017) Detection of Host Response to Viral Respiratory Infection by Measurement of Messenger RNA for MxA, TRIM21, and Viperin in Nasal Swabs. J Infect Dis 216(9):1099–1103

    Article  CAS  PubMed  Google Scholar 

  118. Tong-Minh K, van Hooijdonk S, Versnel MA, et al (2022) Blood myxovirus resistance protein-1 measurement in the diagnostic work-up of suspected COVID-19 infection in the emergency department. Immun Inflamm Dis 10(4):e609. https://doi.org/10.1002/iid3.609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Mayne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayne, E.S., George, J.A., Louw, S. (2023). Assessing Biomarkers in Viral Infection. In: Guest , P.C. (eds) Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19. Advances in Experimental Medicine and Biology(), vol 1412. Springer, Cham. https://doi.org/10.1007/978-3-031-28012-2_8

Download citation

Publish with us

Policies and ethics