Skip to main content

Advertisement

Log in

Lipids and HCV

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Chronic hepatitis C virus (HCV) infection is associated with an increase in hepatic steatosis and a decrease in serum levels of total cholesterol, low-density lipoprotein cholesterol (LDL) and apolipoprotein B (apoB), the main protein constituent of LDL and very low-density lipoprotein (VLDL). These changes are more marked in HCV genotype 3 infection, and effective treatment results in their reversal. Low lipid levels in HCV infection correlate not only with steatosis and more advanced liver fibrosis but also with non-response to interferon-based therapy. The clinical relevance of disrupted lipid metabolism reflects the fact that lipids play a crucial role in the life cycle of hepatitis C virus. HCV assembly and maturation in hepatocytes depend on microsomal triglyceride transfer protein and apoB in a manner that parallels the formation of VLDL. VLDL production from the liver occurs throughout the day with an estimated 1018 particles produced every 24 h whilst the estimated hepatitis C virion production rate is 1012 virions per day. HCV particles in the serum exist as a mixture of complete low-density infectious lipo-viral particles (LVP) and a vast excess of apoB-associated empty nucleocapsid-free sub-viral particles that are complexed with anti-HCV envelope antibodies. Apolipoprotein E (apoE) is also involved in HCV particle morphogenesis and is an essential apolipoprotein for HCV infectivity. ApoE is a critical ligand for the receptor-mediated removal of triglyceride rich lipoprotein (TRL) remnants by the liver. The dynamics of apoB-associated lipoproteins, including HCV-LVP, change post-prandially with an increase in large TRL remnants and very low density HCV-LVP which are rapidly cleared by the liver (at least three HCV receptors are cellular receptors for uptake of TRL remnants). In summary, HCV utilises triglyceride-rich lipoprotein pathways within the liver and the circulation to its advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blasiole DA, Davis RA, Attie AD (2007) The physiological and molecular regulation of lipoprotein assembly and secretion. Mol Biosyst 3(9):608–619

    Article  PubMed  CAS  Google Scholar 

  2. Alter MJ (2007) Epidemiology of hepatitis C virus infection. World J Gastroenterol 13(17):2436–2441

    PubMed  Google Scholar 

  3. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529–538

    Article  PubMed  Google Scholar 

  4. Simmonds P (2004) Genetic diversity and evolution of hepatitis C virus—15 years on. J Gen Virol 85(Pt 11):3173–3188

    Article  PubMed  CAS  Google Scholar 

  5. Neumann AU, Lam NP, Dahari H et al (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282(5386):103–107

    Article  PubMed  CAS  Google Scholar 

  6. Simmonds P, Bukh J, Combet C et al (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42(4):962–973

    Article  PubMed  CAS  Google Scholar 

  7. Jang JY, Chung RT (2011) Chronic hepatitis C. Gut and liver 5(2):117–132

    Article  PubMed  Google Scholar 

  8. Pang PS, Planet PJ, Glenn JS (2009) The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy. PLoS One 4(8):e6579

    Article  PubMed  CAS  Google Scholar 

  9. Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138(1):30–50

    Article  PubMed  CAS  Google Scholar 

  10. Wakita T, Pietschmann T, Kato T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11(7):791–796

    Article  PubMed  CAS  Google Scholar 

  11. Podevin P, Carpentier A, Pene V et al (2010) Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139(4):1355–1364

    Article  PubMed  CAS  Google Scholar 

  12. Aly HH, Oshiumi H, Shime H et al (2011) Development of mouse hepatocyte lines permissive for hepatitis C virus (HCV). PLoS One 6(6):e21284

    Article  PubMed  CAS  Google Scholar 

  13. Bassendine MF, Sheridan DA, Felmlee DJ et al (2011) HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol 55(6):1428–1440

    Article  PubMed  CAS  Google Scholar 

  14. Bamber M, Murray AK, Weller IV et al (1981) Clinical and histological features of a group of patients with sporadic non-A, non-B hepatitis. J Clin Pathol 34(10):1175–1180

    Article  PubMed  CAS  Google Scholar 

  15. Goodman ZD, Ishak KG (1995) Histopathology of hepatitis C virus infection. Semin Liver Disease 15(1):70–81

    Article  CAS  Google Scholar 

  16. Czaja AJ, Carpenter HA, Santrach PJ, Moore SB (1998) Host- and disease-specific factors affecting steatosis in chronic hepatitis C. J Hepatol 29(2):198–206

    Article  PubMed  CAS  Google Scholar 

  17. Mihm S, Fayyazi A, Hartmann H, Ramadori G (1997) Analysis of histopathological manifestations of chronic hepatitis C virus infection with respect to virus genotype. Hepatology 25(3):735–739

    Article  PubMed  CAS  Google Scholar 

  18. Adinolfi LE, Utili R, Andreana A et al (2000) Relationship between genotypes of hepatitis C virus and histopathological manifestations in chronic hepatitis C patients. Eur J Gastroenterol Hepatol 12(3):299–304

    Article  PubMed  CAS  Google Scholar 

  19. Rubbia-Brandt L, Quadri R, Abid K et al (2000) Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. J Hepatol 33(1):106–115

    Article  PubMed  CAS  Google Scholar 

  20. Kumar D, Farrell GC, Fung C, George J (2002) Hepatitis C virus genotype 3 is cytopathic to hepatocytes: reversal of hepatic steatosis after sustained therapeutic response. Hepatology 36(5):1266–1272

    Article  PubMed  Google Scholar 

  21. Castera L, Hezode C, Roudot-Thoraval F et al (2004) Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: indirect evidence of a role of hepatitis C virus genotype 3 in steatosis. Gut 53(3):420–424

    Article  PubMed  CAS  Google Scholar 

  22. Poynard T, Ratziu V, McHutchison J et al (2003) Effect of treatment with peginterferon or interferon alpha-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology 38(1):75–85

    Article  PubMed  CAS  Google Scholar 

  23. Baiocchi L, Tisone G, Palmieri G et al (1998) Hepatic steatosis: a specific sign of hepatitis C reinfection after liver transplantation. Liver Transpl Surg 4(6):441–447

    Article  PubMed  CAS  Google Scholar 

  24. Lerat H, Honda M, Beard MR et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122(2):352–365

    Article  PubMed  CAS  Google Scholar 

  25. Moriya K, Yotsuyanagi H, Shintani Y et al (1997) Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78(Pt 7):1527–1531

    PubMed  CAS  Google Scholar 

  26. Piodi A, Chouteau P, Lerat H, Hezode C, Pawlotsky JM (2008) Morphological changes in intracellular lipid droplets induced by different hepatitis C virus genotype core sequences and relationship with steatosis. Hepatology 48(1):16–27

    Article  PubMed  CAS  Google Scholar 

  27. Herker E, Harris C, Hernandez C et al (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16:1295–1298

    Article  PubMed  CAS  Google Scholar 

  28. Harris C, Herker E, Farese RV Jr, Ott M (2011) Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem 286(49):42615–42625

    Article  PubMed  CAS  Google Scholar 

  29. Tachi Y, Katano Y, Honda T et al (2010) Impact of amino acid substitutions in the hepatitis C virus genotype 1b core region on liver steatosis and hepatic oxidative stress in patients with chronic hepatitis C. Liver Int 30(4):554–559

    Article  PubMed  CAS  Google Scholar 

  30. Miyoshi H, Moriya K, Tsutsumi T et al (2011) Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein. J Hepatol 54(3):432–438

    Article  PubMed  CAS  Google Scholar 

  31. Vescovo T, Romagnoli A, Perdomo AB et al (2012) Autophagy protects cells from HCV-induced defects in lipid metabolism. Gastroenterology 142:644–653

    Article  PubMed  CAS  Google Scholar 

  32. Hourigan LF, Macdonald GA, Purdie D et al (1999) Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 29(4):1215–1219

    Article  PubMed  CAS  Google Scholar 

  33. Adinolfi LE, Gambardella M, Andreana A et al (2001) Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 33(6):1358–1364

    Article  PubMed  CAS  Google Scholar 

  34. Monto A, Alonzo J, Watson JJ, Grunfeld C, Wright TL (2002) Steatosis in chronic hepatitis C: relative contributions of obesity, diabetes mellitus, and alcohol. Hepatology 36(3):729–736

    Article  PubMed  Google Scholar 

  35. Perumalswami P, Kleiner DE, Lutchman G et al (2006) Steatosis and progression of fibrosis in untreated patients with chronic hepatitis C infection. Hepatology 43(4):780–787

    Article  PubMed  Google Scholar 

  36. Negro F, Sanyal AJ (2009) Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int 29(Suppl 2):26–37

    Article  PubMed  CAS  Google Scholar 

  37. Fernandez-Hernando C, Suarez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22(2):86–92

    Article  PubMed  CAS  Google Scholar 

  38. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L (2011) Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6(8):e23937

    Article  PubMed  CAS  Google Scholar 

  39. Mallat A, Lotersztajn S (2010) Endocannabinoids and their role in fatty liver disease. Dig Dis 28(1):261–266, Basel, Switzerland

    Article  PubMed  CAS  Google Scholar 

  40. Toyoda M, Kitaoka A, Machida K et al (2011) Association between lipid accumulation and the cannabinoid system in Huh7 cells expressing HCV genes. Int J Molec Med 27(5):619–624

    PubMed  CAS  Google Scholar 

  41. Romeo S, Kozlitina J, Xing C et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40(12):1461–1465

    Article  PubMed  CAS  Google Scholar 

  42. Trepo E, Pradat P, Potthoff A et al (2011) Impact of patatin-like phospholipase-3 (rs738409 C>G) polymorphism on fibrosis progression and steatosis in chronic hepatitis C. Hepatology 54(1):60–69

    Article  PubMed  CAS  Google Scholar 

  43. Valenti L, Rumi M, Galmozzi E et al (2011) Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology 53(3):791–799

    Article  PubMed  CAS  Google Scholar 

  44. Cai T, Dufour JF, Muellhaupt B et al (2011) Viral genotype-specific role of PNPLA3, PPARG, MTTP, and IL28B in hepatitis C virus-associated steatosis. J Hepatol 55(3):529–535

    Article  PubMed  CAS  Google Scholar 

  45. Leandro G, Mangia A, Hui J et al (2006) Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 130(6):1636–1642

    Article  PubMed  Google Scholar 

  46. Hu KQ, Currie SL, Shen H et al (2007) Clinical implications of hepatic steatosis in patients with chronic hepatitis C: a multicenter study of U.S. veterans. Dig Dis Sci 52(2):570–578

    Article  PubMed  Google Scholar 

  47. Marks KM, Petrovic LM, Talal AH et al (2005) Histological findings and clinical characteristics associated with hepatic steatosis in patients coinfected with HIV and hepatitis C virus. J Infect Dis 192(11):1943–1949

    Article  PubMed  Google Scholar 

  48. McGovern BH, Ditelberg JS, Taylor LE et al (2006) Hepatic steatosis is associated with fibrosis, nucleoside analogue use, and hepatitis C virus genotype 3 infection in HIV-seropositive patients. Clin Infect Dis 43(3):365–372

    Article  PubMed  CAS  Google Scholar 

  49. Brandman D, Pingitore A, Lai JC et al (2011) Hepatic steatosis at 1 year is an additional predictor of subsequent fibrosis severity in liver transplant recipients with recurrent hepatitis C virus. Liver Transpl 17(12):1380–1386

    Article  PubMed  Google Scholar 

  50. Bugianesi E, Marchesini G, Gentilcore E et al (2006) Fibrosis in genotype 3 chronic hepatitis C and nonalcoholic fatty liver disease: role of insulin resistance and hepatic steatosis. Hepatology 44(6):1648–1655

    Article  PubMed  CAS  Google Scholar 

  51. Soresi M, Tripi S, Franco V et al (2006) Impact of liver steatosis on the antiviral response in the hepatitis C virus-associated chronic hepatitis. Liver Int 26(9):1119–1125

    Article  PubMed  CAS  Google Scholar 

  52. Westin J, Lagging M, Dhillon AP et al (2007) Impact of hepatic steatosis on viral kinetics and treatment outcome during antiviral treatment of chronic HCV infection. J Viral Hepatitis 14(1):29–35

    Article  CAS  Google Scholar 

  53. Lok AS, Everhart JE, Chung RT et al (2007) Hepatic steatosis in hepatitis C: comparison of diabetic and nondiabetic patients in the hepatitis C antiviral long-term treatment against cirrhosis trial. Clin Gastroenterol Hepatol 5(2):245–254

    Article  PubMed  CAS  Google Scholar 

  54. Shah SR, Patel K, Marcellin P et al (2011) Steatosis is an independent predictor of relapse following rapid virologic response in patients with HCV genotype 3. Clin Gastroenterol Hepatol 9(8):688–693

    Article  PubMed  Google Scholar 

  55. Pekow JR, Bhan AK, Zheng H, Chung RT (2007) Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer 109(12):2490–2496

    Article  PubMed  Google Scholar 

  56. Lerat H, Higgs M, Pawlotsky JM (2011) Animal models in the study of hepatitis C virus-associated liver pathologies. Expert Rev Gastroenterol Hepatol 5(3):341–352

    Article  PubMed  Google Scholar 

  57. Perlemuter G, Sabile A, Lettteron P et al (2002) Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 16(2):185–194

    Article  PubMed  CAS  Google Scholar 

  58. Moriya K, Fujie H, Shintani Y et al (1998) The core protein of hepatitis C virus induces hepatocellular carcinmoa in transgenic mice. Nature Med 4(9):1065–1067

    Article  PubMed  CAS  Google Scholar 

  59. Ahmad J, Eng FJ, Branch AD (2011) HCV and HCC: clinical update and a review of HCC-associated viral mutations in the core gene. Semin Liver Disease 31(4):347–355

    Article  CAS  Google Scholar 

  60. Maggi G, Bottelli R, Gola D et al (1996) Serum cholesterol and chronic hepatitis C. Ital J Gastroenterol 28(8):436–440

    PubMed  CAS  Google Scholar 

  61. Fabris C, Federico E, Soardo G, Falleti E, Pirisi M (1997) Blood lipids of patients with chronic hepatitis: differences related to viral etiology. Clin Chim Acta; Int J Clin Chem 261(2):159–165

    Article  CAS  Google Scholar 

  62. Polgreen PM, Fultz SL, Justice AC et al (2004) Association of hypocholesterolaemia with hepatitis C virus infection in HIV-infected people. HIV medicine 5(3):144–150

    Article  PubMed  CAS  Google Scholar 

  63. Hofer H, Banki HC, Wrba F et al (2002) Hepatocellular fat accumulation and low serum cholesterol in patients infected with HCV-3a. Am J Gastroenterol 97(11):2880–2885

    Article  PubMed  CAS  Google Scholar 

  64. Sheridan DA, Price DA, Schmid ML et al (2009) Apolipoprotein B-associated cholesterol is a determinant of treatment outcome in patients with chronic hepatitis C virus infection receiving anti-viral agents interferon-alpha and ribavirin. Aliment Pharmacol Ther 29(12):1282–1290

    Article  PubMed  CAS  Google Scholar 

  65. Moriya K, Shintani Y, Fujie H et al (2003) Serum lipid profile of patients with genotype 1b hepatitis C viral infection in Japan. Hepatol Res 25(4):371–376

    Article  PubMed  CAS  Google Scholar 

  66. Marzouk D, Sass J, Bakr I et al (2007) Metabolic and cardiovascular risk profiles and hepatitis C virus infection in rural Egypt. Gut 56(8):1105–1110

    Article  PubMed  CAS  Google Scholar 

  67. Dai CY, Chuang WL, Ho CK et al (2008) Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: a community-based study. J Hepatol 49(1):9–16

    Article  PubMed  CAS  Google Scholar 

  68. Miyazaki T, Honda A, Ikegami T et al (2011) Hepatitis C virus infection causes hypolipidemia regardless of hepatic damage or nutritional state: an epidemiological survey of a large Japanese cohort. Hepatol Res 41(6):530–541

    Article  PubMed  CAS  Google Scholar 

  69. Lao XQ, Thompson A, McHutchison JG, McCarthy JJ (2011) Sex and age differences in lipid response to chronic infection with the hepatitis C virus in the United States National Health and Nutrition Examination Surveys. J Viral hepatitis 18(8):571–579

    Article  CAS  Google Scholar 

  70. Arciello M, Petta S, Leoni V et al (2012) Inverse correlation between plasma oxysterol and LDL-cholesterol levels in hepatitis C virus-infected patients. Dig Liver Dis 44(3):245–250

    Article  PubMed  CAS  Google Scholar 

  71. Corey KE, Kane E, Munroe C et al (2009) Hepatitis C virus infection and its clearance alter circulating lipids: implications for long-term follow-up. Hepatology 50(4):1030–1037

    Article  PubMed  CAS  Google Scholar 

  72. Corey KE, Mendez-Navarro J, Barlow LL et al (2011) Acute hepatitis C infection lowers serum lipid levels. J Viral hepatitis 18(7):e366–e371

    Article  CAS  Google Scholar 

  73. Serfaty L, Andreani T, Giral P et al (2001) Hepatitis C virus induced hypobetalipoproteinemia: a possible mechanism for steatosis in chronic hepatitis C. J Hepatol 34(3):428–434

    Article  PubMed  CAS  Google Scholar 

  74. Petit JM, Benichou M, Duvillard L et al (2003) Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis. Am J Gastroenterol 98(5):1150–1154

    PubMed  CAS  Google Scholar 

  75. Bima AI, Hooper AJ, van Bockxmeer FM, Burnett JR (2009) Hypobetalipoproteinaemia secondary to chronic hepatitis C virus infection in a patient with familial hypercholesterolaemia. Ann Clin Biochem 46(Pt 5):420–422

    Article  PubMed  Google Scholar 

  76. Domitrovich AM, Felmlee DJ, Siddiqui A (2005) Hepatitis C virus nonstructural proteins inhibit apolipoprotein B100 secretion. J Biol Chem 280(48):39802–39808

    Article  PubMed  CAS  Google Scholar 

  77. Rowell J, Thompson AJ, Guyton JR et al (2011) Serum apolipoprotein C-III is independently associated with chronic hepatitis C infection and advanced fibrosis. Hepatol Int Jul 7 [Epub ahead of print]

  78. Gangadharan B, Bapat M, Rossa J et al (2012) Discovery of novel biomarker candidates for liver fibrosis in hepatitis C patients: a preliminary study. PLoS One 7(6):e39603

    Article  PubMed  CAS  Google Scholar 

  79. Sheridan DA, Bridge SH, Felmlee DJ et al (2012) Apolipoprotein-E and hepatitis C lipoviral particles in genotype 1 infection: evidence for an association with interferon sensitivity. J Hepatol 57(1):32–38

    Article  PubMed  CAS  Google Scholar 

  80. Fernadez-Rodriguez CM, Lopez-Serrano P, Alonso S et al (2006) Long-term reversal of hypocholesterolaemia in patients with chronic hepatitis C is related to sustained viral response and viral genotype. Aliment Pharmacol Ther 24(3):507–512

    Article  CAS  Google Scholar 

  81. Afdhal NH, McHutchison JG, Zeuzem S et al (2011) Hepatitis C pharmacogenetics: state of the art in 2010. Hepatology 53(1):336–345

    Article  PubMed  Google Scholar 

  82. Li JH, Lao XQ, Tillmann HL et al (2010) Interferon-lambda genotype and low serum low-density lipoprotein cholesterol levels in patients with chronic hepatitis C infection. Hepatology 51(6):1904–1911

    Article  PubMed  Google Scholar 

  83. Aizawa Y, Yohizawa K, Aida Y et al (2012) Genotype rs8099917 near the IL28B gene and amino acid substitution at position 70 in the core region of the hepatitis C virus are determinants of serum apolipoprotein B-100 concentration in chronic hepatitis C. Mol Cell Biochem 360(1–2):9–14

    Article  PubMed  CAS  Google Scholar 

  84. Tillmann HL, Patel K, Muir AJ et al (2011) Beneficial IL28B genotype associated with lower frequency of hepatic steatosis in patients with chronic hepatitis C. J Hepatol 55(6):1195–1200

    Article  PubMed  CAS  Google Scholar 

  85. Ramcharran D, Wahed AS, Conjeevaram HS et al (2011) Serum lipids and their associations with viral levels and liver disease severity in a treatment-naive chronic hepatitis C type 1-infected cohort. J Viral hepatitis 18(4):e144–e152

    Article  CAS  Google Scholar 

  86. Backus LI, Boothroyd DB, Phillips BR, Mole LA (2007) Predictors of response of US Veterans to treatment for the hepatitis C virus. Hepatology 46(1):37–47

    Article  PubMed  CAS  Google Scholar 

  87. Lange CM, von Wagner M, Bojunga J et al (2010) Serum lipids in European chronic HCV genotype 1 patients during and after treatment with pegylated interferon-alpha-2a and ribavirin. Eur J Gastroenterol Hepatol 22(11):1303–1307

    Article  PubMed  CAS  Google Scholar 

  88. Gopal K, Johnson TC, Gopal S et al (2006) Correlation between beta-lipoprotein levels and outcome of heaptitis C treatment. Hepatology 44:335–340

    Article  PubMed  CAS  Google Scholar 

  89. Akuta N, Suzuki F, Kawamura Y et al (2007) Predictive factors of early and sustained responses to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b: amino acid substitutions in the core region and low-density lipoprotein cholesterol levels. J Hepatol 46(3):403–410

    Article  PubMed  CAS  Google Scholar 

  90. Harrison SA, Rossaro L, Hu KQ et al (2010) Serum cholesterol and statin use predict virological response to peginterferon and ribavirin therapy. Hepatology 52(3):864–874

    Article  PubMed  CAS  Google Scholar 

  91. del Valle J, Mira JA, de los Santos I et al (2008) Baseline serum low-density lipoprotein cholesterol levels predict response to hepatitis C virus therapy in HIV/hepatitis C virus coinfected patients. AIDS 22(8):923–930

    Article  PubMed  CAS  Google Scholar 

  92. Cesari M, Caramma I, Antinori S et al (2009) Impact of hyperglycaemia and cholesterol levels on the outcome of hepatitis C virus (HCV) treatment in HIV/HCV-coinfected patients. HIV medicine 10(9):580–585

    Article  PubMed  CAS  Google Scholar 

  93. Mostafa A, Mohamed MK, Saeed M et al (2010) Hepatitis C infection and clearance: impact on atherosclerosis and cardiometabolic risk factors. Gut 59(8):1135–1140

    Article  PubMed  CAS  Google Scholar 

  94. Alyan O, Kacmaz F, Ozdemir O et al (2008) Hepatitis C infection is associated with increased coronary artery atherosclerosis defined by modified Reardon severity score system. Circ J 72(12):1960–1965

    Article  PubMed  Google Scholar 

  95. Butt AA, Xiaoqiang W, Budoff M et al (2009) Hepatitis C virus infection and the risk of coronary disease. Clin Infect Dis 49(2):225–232

    Article  PubMed  Google Scholar 

  96. Oliveira CP, Kappel CR, Siqueira ER et al (2011) effects of hepatitis c virus on cardiovascular risk in infected patients: a comparative study. Int J Cardiol Jul 22 [Epub ahead of print]

  97. Petta S, Torres D, Fazio G et al (2012) Carotid atherosclerosis and chronic hepatitis C: a prospective study of risk associations. Hepatology 55(5):1317–1323

    Article  PubMed  Google Scholar 

  98. Bedimo R, Westfall AO, Mugavero M et al (2010) Hepatitis C virus coinfection and the risk of cardiovascular disease among HIV-infected patients. HIV medicine 11(7):462–468

    PubMed  CAS  Google Scholar 

  99. Weber R, Sabin C, Reiss P et al (2010) HBV or HCV coinfections and risk of myocardial infarction in HIV-infected individuals: the D:A:D Cohort Study. Antivir Ther 15(8):1077–1086

    Article  PubMed  Google Scholar 

  100. Eslam M, Khattab MA, Harrison SA (2011) Insulin resistance and hepatitis C: an evolving story. Gut 60(8):1139–1151

    Article  PubMed  CAS  Google Scholar 

  101. Sundaram M, Yao Z (2010) Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab 7:35

    Article  CAS  Google Scholar 

  102. Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44:22–32

    Article  PubMed  CAS  Google Scholar 

  103. Rutledge AC, Su Q, Adeli K (2010) Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly. Biochemistry and cell biology =. Biochim Biol Cell 88(2):251–267

    Article  CAS  Google Scholar 

  104. Olofsson SO, Bostrom P, Andersson L et al (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 1791(6):448–458

    Article  PubMed  CAS  Google Scholar 

  105. Sundaram M, Zhong S, Bou Khalil M et al (2010) Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res 51(1):150–161

    Article  PubMed  Google Scholar 

  106. Sorensen LP, Andersen IR, Sondergaard E et al (2011) Basal and insulin mediated VLDL-triglyceride kinetics in type 2 diabetic men. Diabetes 60(1):88–96

    Article  PubMed  CAS  Google Scholar 

  107. Adiels M, Olofsson SO, Taskinen MR, Boren J (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 28(7):1225–1236

    Article  PubMed  CAS  Google Scholar 

  108. Wang L, Walsh MT, Small DM (2006) Apolipoprotein B is conformationally flexible but anchored at a triolein/water interface: a possible model for lipoprotein surfaces. Proc Natl Acad Sci U S A 103(18):6871–6876

    Article  PubMed  CAS  Google Scholar 

  109. Packard CJ, Munro A, Lorimer AR, Gotto AM, Shepherd J (1984) Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects. J Clin Investig 74(6):2178–2192

    Article  PubMed  CAS  Google Scholar 

  110. Lund-Katz S, Phillips MC (2010) High density lipoprotein structure-function and role in reverse cholesterol transport. Sub-cell Biochem 51:183–227

    Article  CAS  Google Scholar 

  111. Vaisar T, Pennathur S, Green PS et al (2007) Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Investig 117(3):746–756

    Article  PubMed  CAS  Google Scholar 

  112. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433

    Article  PubMed  CAS  Google Scholar 

  113. Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5(6):453–463

    Article  PubMed  CAS  Google Scholar 

  114. Alvisi G, Madan V, Bartenschlager R (2011) Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol 8(2):258–269

    Article  PubMed  CAS  Google Scholar 

  115. Egger D, Wolk B, Gosert R et al (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76(12):5974–5984

    Article  PubMed  CAS  Google Scholar 

  116. Gosert R, Egger D, Lohmann V et al (2003) Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol 77(9):5487–5492

    Article  PubMed  CAS  Google Scholar 

  117. Tai AW, Benita Y, Peng LF et al (2009) A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5(3):298–307

    Article  PubMed  CAS  Google Scholar 

  118. Lim YS, Hwang SB (2011) Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J Biol Chem 286(13):11290–11298

    Article  PubMed  CAS  Google Scholar 

  119. Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G (2011) Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J Virol 85(17):8870–8883

    Article  PubMed  CAS  Google Scholar 

  120. Wang C, Gale M Jr, Keller BC et al (2005) Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Molecular cell 18(4):425–434

    Article  PubMed  CAS  Google Scholar 

  121. Kapadia SB, Chisari FV (2005) Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102(7):2561–2566

    Article  PubMed  CAS  Google Scholar 

  122. Leu GZ, Lin TY, Hsu JT (2004) Anti-HCV activities of selective polyunsaturated fatty acids. Biochem Biophys Res Commun 318(1):275–280

    Article  PubMed  CAS  Google Scholar 

  123. Roberts AP, Lewis AP, Jopling CL (2011) miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res 39(17):7716–7729

    Article  PubMed  CAS  Google Scholar 

  124. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  CAS  Google Scholar 

  125. Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  PubMed  CAS  Google Scholar 

  126. Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201

    Article  PubMed  CAS  Google Scholar 

  127. Huang H, Sun F, Owen DM et al (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104(14):5848–5853

    Article  PubMed  CAS  Google Scholar 

  128. Nahmias Y, Goldwasser J, Casali M et al (2008) Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47(5):1437–1445

    Article  PubMed  CAS  Google Scholar 

  129. Gastaminza P, Cheng G, Wieland S et al (2008) Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 82(5):2120–2129

    Article  PubMed  CAS  Google Scholar 

  130. Ndongo-Thiam N, Berthillon P, Errazuriz E et al (2011) Long-term propagation of serum hepatitis C virus (HCV) with production of enveloped HCV particles in human HepaRG hepatocytes. Hepatology 54(2):406–417

    Article  PubMed  CAS  Google Scholar 

  131. Icard V, Diaz O, Scholtes C et al (2009) Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins. PLoS One 4(1):e4233

    Article  PubMed  CAS  Google Scholar 

  132. Barba G, Harper F, Harada T et al (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci U S A 94(4):1200–1205

    Article  PubMed  CAS  Google Scholar 

  133. Rouille Y, Helle F, Delgrange D et al (2006) Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus. J Virol 80(6):2832–2841

    Article  PubMed  CAS  Google Scholar 

  134. Miyanari Y, Atsuzawa K, Usuda N et al (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9(9):1089–1097

    Article  PubMed  CAS  Google Scholar 

  135. Targett-Adams P, Hope G, Boulant S, McLauchlan J (2008) Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production. J Biol Chem 283(24):16850–16859

    Article  PubMed  CAS  Google Scholar 

  136. Counihan NA, Rawlinson SM, Lindenbach BD (2011) Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog 7(10):e1002302

    Article  PubMed  CAS  Google Scholar 

  137. Jones DM, McLauchlan J (2010) Hepatitis C virus: assembly and release of virus particles. J Biol Chem 285(30):22733–9

    Google Scholar 

  138. Coller KE, Heaton NS, Berger KL et al (2012) Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog 8(1):e1002466

    Article  PubMed  CAS  Google Scholar 

  139. Li Q, Brass AL, Ng A et al (2009) A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci U S A 106(38):16410–16415

    Article  PubMed  CAS  Google Scholar 

  140. Jiang J, Luo G (2009) Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J Virol 83(24):12680–12691

    Article  PubMed  CAS  Google Scholar 

  141. Cun W, Jiang J, Luo G (2010) The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. J Virol 84(21):11532–11541

    Article  PubMed  CAS  Google Scholar 

  142. Benga WJ, Krieger SE, Dimitrova M et al (2010) Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51(1):43–53

    Article  PubMed  CAS  Google Scholar 

  143. Long G, Hiet MS, Windisch MP et al (2011) Mouse hepatic cells support assembly of infectious hepatitis C virus particles. Gastroenterology 141(3):1057–1066

    Article  PubMed  CAS  Google Scholar 

  144. Nielsen SU, Bassendine MF, Martin C et al (2008) Characterization of hepatitis C RNA-containing particles from human liver by density and size. J Gen Virol 89(10):2507–2517

    Article  PubMed  CAS  Google Scholar 

  145. Blackham S, Baillie A, Al-Hababi F et al (2010) Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J Virol 84(10):5404–5414

    Article  PubMed  CAS  Google Scholar 

  146. Yang W, Hood BL, Chadwick SL et al (2008) Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48(5):1396–1403

    Article  PubMed  CAS  Google Scholar 

  147. Woodhouse SD, Narayan R, Latham S et al (2010) Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 52(2):443–453

    Article  PubMed  CAS  Google Scholar 

  148. Roe B, Kensicki E, Mohney R, Hall WW (2011) Metabolomic profile of hepatitis C virus-infected hepatocytes. PLoS One 6(8):e23641

    Article  PubMed  CAS  Google Scholar 

  149. Bukh J (2004) A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39(6):1469–1475

    Article  PubMed  CAS  Google Scholar 

  150. Lindenbach BD, Evans MJ, Syder AJ et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309(5734):623–626

    Article  PubMed  CAS  Google Scholar 

  151. Andre P, Komurian PF, Deforges S et al (2002) Characterization of low- and very-low-density hepatitis C virus RNA containing particles. J Virol 76:6919–6928

    Article  PubMed  CAS  Google Scholar 

  152. Nielson SU, Bassendine MF, Burt AD et al (2006) Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analysed in iodixanol density gradients. J Virol 80(5):2418–2428

    Article  CAS  Google Scholar 

  153. Scholtes C, Ramiere C, Rainteau D et al (2012) High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology 56(1):39–48

    Article  PubMed  CAS  Google Scholar 

  154. Meunier J-C, Russell RS, Engle RE et al (2008) Apolipoprotein c1 association with hepatitis C virus. J Virol 82(19):9647–9656

    Article  PubMed  CAS  Google Scholar 

  155. Merz A, Long G, Hiet MS et al (2011) Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 286(4):3018–3032

    Article  PubMed  CAS  Google Scholar 

  156. Yamamoto M, Aizaki H, Fukasawa M et al (2011) Structural requirements of virion-associated cholesterol for infectivity, buoyant density and apolopoprotein association of hepatitis C virus. J Gen. Virol 92(Pt9):2082–7

    Google Scholar 

  157. Lindenbach BD, Meuleman P, Ploss A et al (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 103(10):3805–3809

    Article  PubMed  CAS  Google Scholar 

  158. Gastaminza P, Kapadia SB, Chisari FV (2006) Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J Virol 80(22):11074–11081

    Article  PubMed  CAS  Google Scholar 

  159. Diaz O, Cubero M, Trabaud MA et al (2008) Transmission of low-density hepatitis C viral particles during sexually transmitted acute resolving infection. J Med Virol 80(2):242–246

    Article  PubMed  CAS  Google Scholar 

  160. Bridge SH, Sheridan DA, Felmlee DJ et al (2011) Insulin resistance and low-density apolipoprotein B-associated lipoviral particles in hepatitis C virus genotype 1 infection. Gut 60(5):680–687

    Article  PubMed  CAS  Google Scholar 

  161. Felmlee DJ, Sheridan DA, Bridge SH et al (2010) Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles. Gastroenterology 139(5):1774–1783, 1783 e1771-1776

    Article  PubMed  CAS  Google Scholar 

  162. Wojczynski MK, Glasser SP, Oberman A et al (2011) High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN): an interventional study. Lipids Health Dis 10:181

    Article  PubMed  CAS  Google Scholar 

  163. Diaz O, Delers F, Maynard M et al (2006) Preferential association of hepatitis C virus with apolipoprotein B48-containing lipoproteins. J Gen Virol 87(Pt 10):2983–2991

    Article  PubMed  CAS  Google Scholar 

  164. Sun HY, Lin CC, Lee JC et al (2012) Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III. Gut Jun 11 [Epub ahead of print]

  165. Steenbergen RH, Joyce MA, Lund G et al (2010) Lipoprotein profiles in SCID/uPA mice transplanted with human hepatocytes become human-like and correlate with HCV infection success. Am J Physiol 299(4):G844–G854

    Article  CAS  Google Scholar 

  166. Farquhar MJ, Harris HJ, McKeating JA (2011) Hepatitis C virus entry and the tetraspanin CD81. Biochem Soc Trans 39(2):532–536

    Article  PubMed  CAS  Google Scholar 

  167. Evans MJ, von Hahn T, Tscherne DM et al (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137):801–805

    Article  PubMed  CAS  Google Scholar 

  168. Ploss A, Evans MJ, Gaysinskaya VA et al (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457(7231):882–886

    Article  PubMed  CAS  Google Scholar 

  169. Lupberger J, Zeisel MB, Xiao F et al (2011) EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17(5):589–595

    Article  PubMed  CAS  Google Scholar 

  170. Dorner M, Horwitz JA, Robbins JB et al (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474(7350):208–211

    Article  PubMed  CAS  Google Scholar 

  171. Sainz B, Jr, Barretto N, Martin DN et al (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18(2) 281–5

    Google Scholar 

  172. Stanford KI, Bishop JR, Foley EM et al (2009) Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Investig 119(11):3236–3245

    PubMed  CAS  Google Scholar 

  173. Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29(4):431–438

    Article  PubMed  CAS  Google Scholar 

  174. Williams KJ, Chen K (2010) Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol 21(3):218–228

    Article  PubMed  CAS  Google Scholar 

  175. MacArthur JM, Bishop JR, Stanford KI et al (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Investig 117(1):153–164

    Article  PubMed  CAS  Google Scholar 

  176. Rohrl C, Fruhwurth S, Schreier SM et al (2010) Scavenger receptor, Class B, Type I provides an alternative means for beta-VLDL uptake independent of the LDL receptor in tissue culture. Biochim Biophys Acta 1801(2):198–204

    Article  PubMed  CAS  Google Scholar 

  177. Imagawa M, Takahashi S, Zenimaru Y et al (2012) Comparative reactivity of remnant-like lipoprotein particles (RLP) and low-density lipoprotein (LDL) to LDL receptor and VLDL receptor: effect of a high-dose statin on VLDL receptor expression. Clin Chim Acta; Int J Clin Chem 413(3-4):441–447

    Article  CAS  Google Scholar 

  178. Van Eck M, Hoekstra M, Out R et al (2008) Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo. J Lipid Res 49(1):136–146

    Article  PubMed  CAS  Google Scholar 

  179. Meex SJ, Andreo U, Sparks JD, Fisher EA (2011) Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion? J Lipid Res 52(1):152–158

    Article  PubMed  CAS  Google Scholar 

  180. Ehrhardt M, Leidinger P, Keller A et al (2011) Profound differences of microRNA expression patterns in hepatocytes and hepatoma cell lines commonly used in hepatitis C virus studies. Hepatology 54(3):1112–1113

    Article  PubMed  CAS  Google Scholar 

  181. Bensadoun P, Rodriguez C, Soulier A et al (2011) Genetic background of hepatocyte cell lines: are in vitro hepatitis C virus research data reliable? Hepatology 54(2):748

    Article  PubMed  Google Scholar 

  182. Barth H, Schnober EK, Zhang F et al (2006) Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J Virol 80(21):10579–10590

    Article  PubMed  CAS  Google Scholar 

  183. Basu A, Kanda T, Beyene A et al (2007) Sulfated homologues of heparin inhibit hepatitis C virus entry into mammalian cells. J Virol 81(8):3933–3941

    Article  PubMed  CAS  Google Scholar 

  184. Molina S, Castet V, Fournier-Wirth C et al (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46(3):411–419

    Article  PubMed  CAS  Google Scholar 

  185. Monazahian M, Bohme I, Bonk S et al (1999) Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J Med Virol 57(3):223–229

    Article  PubMed  CAS  Google Scholar 

  186. Albecka A, Belouzard S, Op de Beeck A et al (2012) Role of LDL receptor in the hepatitis c virus life cycle. Hepatology 55(4):998–1007

    Article  PubMed  CAS  Google Scholar 

  187. Scarselli E, Ansuini H, Cerino R et al (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21(19):5017–5025

    Article  PubMed  CAS  Google Scholar 

  188. Catanese MT, Ansuini H, Graziani R et al (2010) Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J Virol 84(1):34–43

    Article  PubMed  CAS  Google Scholar 

  189. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471

    Article  PubMed  CAS  Google Scholar 

  190. Mamotte CD, Sturm M, Foo JI, van Bockxmeer FM, Taylor RR (1999) Comparison of the LDL-receptor binding of VLDL and LDL from apoE4 and apoE3 homozygotes. Am J Physiol 276(3 Pt 1):E553–E557

    PubMed  CAS  Google Scholar 

  191. Jiang J, Cun W, Wu X et al (2012) Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J Virol 86(13):7256–7267

    Article  PubMed  CAS  Google Scholar 

  192. Owen DM, Huang H, Ye J, Gale M Jr (2009) Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 394(1):99–108

    Article  PubMed  CAS  Google Scholar 

  193. Mazumdar B, Banerjee A, Meyer K, Ray R (2011) Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes. Hepatology 54(4):1149–1156

    Article  PubMed  CAS  Google Scholar 

  194. Akazawa D, Morikawa K, Omi N et al (2011) Production and characterization of HCV particles from serum-free culture. Vaccine 29:4821–4828

    Article  PubMed  CAS  Google Scholar 

  195. Liu S, McCormick KD, Zhao W et al (2012) Human apolipoprotein E peptides inhibit hepatitis C virus entry by blocking virus binding. Hepatology 56(2):484–491

    Article  PubMed  CAS  Google Scholar 

  196. Hishiki T, Shimizu Y, Tobita R et al (2010) Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 84(22):12048–12057

    Article  PubMed  CAS  Google Scholar 

  197. Price DA, Bassendine MF, Norris SN et al (2006) The apolipoprotein e3 allele is associated with persistent hepatitis C virus infection. Gut 55(5):715–718

    Article  PubMed  CAS  Google Scholar 

  198. Wong-Staal F, Syder AJ, McKelvy JF (2010) Targeting HCV entry for development of therapeutics. Viruses 2(8):1718–1733

    Article  PubMed  CAS  Google Scholar 

  199. Anderson LJ, Lin K, Compton T, Wiedmann B (2011) Inhibition of cyclophilins alters lipid trafficking and blocks hepatitis C virus secretion. Virol J 8:329

    Article  PubMed  CAS  Google Scholar 

  200. Gastaminza P, Dryden KA, Boyd B et al (2010) Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J Virol 84(21):10999–11009

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Bassendine.

Additional information

This article is a contribution to the special issue on Immunopathology of viral hepatitis - Guest Editor: C. Selmi and J. Vierling

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassendine, M.F., Sheridan, D.A., Bridge, S.H. et al. Lipids and HCV. Semin Immunopathol 35, 87–100 (2013). https://doi.org/10.1007/s00281-012-0356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0356-2

Keywords

Navigation