Skip to main content
Log in

Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Iron oxide nanoparticles (IONPs) are excellent candidates for biomedical imaging because of unique characteristics like enhanced colloidal stability and excellent in vivo biocompatibility. Over the last decade, material scientists have developed IONPs with better imaging and enhanced optical absorbance properties by tuning their sizes, shape, phases, and surface characterizations. Since IONPs could be detected with magnetic resonance imaging, various attempts have been made to combine other imaging modalities, thereby creating a high-resolution imaging platform. Composite IONPs (CIONPs) comprising IONP cores with polymeric or inorganic coatings have recently been documented as a promising modality for therapeutic applications.

Methods:

In this review, we provide an overview of the recent advances in CIONPs for multimodal imaging and focus on the therapeutic applications of CIONPs.

Result:

CIONPs with phototherapeutics, IONP-based nanoparticles are used for theranostic application via imaging guided photothermal therapy.

Conclusion:

CIONP-based nanoparticles are known for theranostic application, longstanding effects of composite NPs in in vivo systems should also be studied. Once such issues are fixed, multifunctional CIONP-based applications can be extended for theranostics of diverse medical diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reference [59], reprinted from American Chemical Society 2012 Copyright

Fig. 3

Reference [67], reprinted from American Chemical Society 2015 copyright

Fig. 4

Reference [81], reprinted from Wiley-VCH 2014 Copyright with permission

Fig. 5

Reference [88], reprinted from Elsevier 2011 Copyright with permission

Similar content being viewed by others

References

  1. Qiao Z, Shi X. Dendrimer-based molecular imaging contrast agents. Prog Polym Sci. 2015;44:1–27.

    Article  CAS  Google Scholar 

  2. Barrow M, Taylor A, Murray P, Rosseinsky MJ, Adams DJ. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem Soc Rev. 2015;44:6733–48.

    Article  PubMed  CAS  Google Scholar 

  3. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115:10637–89.

    Article  PubMed  CAS  Google Scholar 

  4. Li J, Shi X, Shen M. Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications. Part Part Syst Charact. 2014;31:1223–37.

    Article  CAS  Google Scholar 

  5. Thomas R, Park IK, Jeong YY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci. 2013;14:15910–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thomas RG, Muthiah M, Moon M, Park IK, Jeong YY. SPION loaded poly(l-lysine)/hyaluronic acid micelles as MR contrast agent and gene delivery vehicle for cancer theranostics. Macromol Res. 2017;25:446–51.

    Article  CAS  Google Scholar 

  7. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63:24–46.

    Article  PubMed  CAS  Google Scholar 

  8. Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16:023501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang G, Zhang X, Skallberg A, Liu Y, Hu Z, Mei X, et al. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale. 2014;6:2953–63.

    Article  PubMed  CAS  Google Scholar 

  10. Torres Martin de Rosales R, Tavaré R, Paul RL, Jauregui-Osoro M, Protti A, Glaria A, et al. Synthesis of 64CuII–bis (dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET–MRI agent. Angew Chem Int Ed Engl. 2011;50:5509–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, et al. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater. 2014;24:1194–201.

    Article  CAS  Google Scholar 

  12. Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31:3016–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sun Y, Zheng Y, Ran H, Zhou Y, Shen H, Chen Y, et al. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials. 2012;33:5854–64.

    Article  PubMed  CAS  Google Scholar 

  14. Zhu J, Lu Y, Li Y, Jiang J, Cheng L, Liu Z, et al. Synthesis of Au–Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale. 2014;6:199–202.

    Article  PubMed  CAS  Google Scholar 

  15. Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, et al. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@ hybrid@ Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater. 2011;23:5392–7.

    Article  PubMed  CAS  Google Scholar 

  16. Yaghoubi SS. PET and SPECT reporter gene imaging. In: Chen X, editor. Molecular imaging probes for cancer research. World Scientific; 2012. pp. 373–415.

  17. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hu Y, Mignani S, Majoral JP, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev. 2018;47:1874–900.

    Article  PubMed  CAS  Google Scholar 

  19. Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64:1394–416.

    Article  PubMed  CAS  Google Scholar 

  20. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17:297–303.

    Article  PubMed  CAS  Google Scholar 

  21. Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K, et al. Theranostic nanoparticles for future personalized medicine. J Controll Release. 2014;190:477–84.

    Article  CAS  Google Scholar 

  22. Lee SJ, Muthiah M, Lee HJ, Lee HJ, Moon MJ, Che HL, et al. Synthesis and characterization of magnetic nanoparticle-embedded multi-functional polymeric micelles for MRI-guided gene delivery. Macromol Res. 2012;20:188–96.

    Article  CAS  Google Scholar 

  23. Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41:2575–89.

    Article  PubMed  CAS  Google Scholar 

  24. Sosnovik DE, Nahrendorf M, Weissleder R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation. 2007;115:2076–86.

    Article  PubMed  Google Scholar 

  25. Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J. 2012;34:462–75.

    Article  PubMed  CAS  Google Scholar 

  26. Muhi A, Ichikawa T, Motosugi U, Sou H, Nakajima H, Sano K, et al. Diagnosis of colorectal hepatic metastases: comparison of contrast-enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic acid-enhanced MRI. J Magn Reson Imaging. 2011;34:326–35.

    Article  PubMed  Google Scholar 

  27. Brembilla G, Dell’Oglio P, Stabile A, Ambrosi A, Cristel G, Brunetti L, et al. Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection. Eur Radiol. 2018;28:1969–76.

    Article  PubMed  Google Scholar 

  28. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–91.

    Article  PubMed  CAS  Google Scholar 

  29. Lee CM, Jeong HJ, Kim EM, Cheong SJ, Park EH, Kim DW, et al. Synthesis and characterization of iron oxide nanoparticles decorated with carboxymethyl curdlan. Macromol Res. 2009;17:133–6.

    Article  CAS  Google Scholar 

  30. Lee DY. Highly effective T2 MR contrast agent based on heparinized superparamagnetic iron oxide nanoparticles. Macromol Res. 2011;19:843–7.

    Article  CAS  Google Scholar 

  31. Yahyapour R, Farhood B, Graily G, Rezaeyan A, Rezapoor S, Abdollahi H, et al. Stem cell tracing through MR molecular imaging. Tissue Eng Regen Med. 2018;15:249–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yim H, Seo S, Na K. MRI contrast agent-based multifunctional materials: diagnosis and therapy. J Nanomater. 2011;2011:19.

    Article  CAS  Google Scholar 

  33. Niu C, Wang Z, Lu G, Krupka TM, Sun Y, You Y, et al. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials. 2013;34:2307–17.

    Article  PubMed  CAS  Google Scholar 

  34. Liu W, Wen S, Jiang L, An X, Zhang M, Wang H, et al. PLGA Hollow microbubbles loaded with iron oxide nanoparticles and doxorubicin for dual-mode US/MR imaging and drug delivery. Curr Nanosci. 2014;10:543–52.

    Article  CAS  Google Scholar 

  35. Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F. Core–shell Fe3O4@ NaLuF4: Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials. 2012;33:4618–27.

    Article  PubMed  CAS  Google Scholar 

  36. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7:2241–9.

    Article  PubMed  CAS  Google Scholar 

  37. Yin T, Zhang Q, Wu H, Gao G, Shapter JG, Shen Y, et al. In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@ polymer-NPO/PEG-Glc@ Ce6 nanoprobes based on small size effect. NPG Asia Mater. 2017;9:e383.

    Article  CAS  Google Scholar 

  38. Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011;32:3447–58.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W, et al. Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano. 2013;7:3287–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bao Y, Sherwood J, Sun Z. Magnetic iron oxide nanoparticles as T 1 contrast agents for magnetic resonance imaging. J Mater Chem C Mater. 2018;6:1280–90.

    Article  CAS  Google Scholar 

  41. Starsich FH, Eberhardt C, Keevend K, Boss A, Hirt AM, Herrmann IK, et al. Reduced magnetic coupling in ultrasmall iron oxide T1 MRI contrast agents. ACS Appl Bio Mater. 2018;1:783–91.

    Article  CAS  PubMed  Google Scholar 

  42. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A. 2017;114:2325–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano. 2015;9:950–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yu J, Yin W, Zheng X, Tian G, Zhang X, Bao T, et al. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics. 2015;5:931–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, et al. Sub-10 nm Fe3O4@Cu2−x S core-shell nanoparticles for dual-modal imaging and photothermal therapy. J Am Chem Soc. 2013;135:8571–7.

    Article  PubMed  CAS  Google Scholar 

  46. Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015;38:10–21.

    Article  PubMed  CAS  Google Scholar 

  47. Hu Y, Wang R, Wang S, Ding L, Li J, Luo Y, et al. Multifunctional Fe3O4@Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci Rep. 2016;6:28325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Carril M, Fernández I, Rodríguez J, García I, Penadés S. Gold-coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part Part Syst Charact. 2014;31:81–7.

    Article  CAS  Google Scholar 

  49. Cho SJ, Jarrett BR, Louie AY, Kauzlarich SM. Gold-coated iron nanoparticles: a novel magnetic resonance agent for T1 and T2 weighted imaging. Nanotechnology. 2006;17:640–4.

    Article  CAS  Google Scholar 

  50. Zhou Z, Huang D, Bao J, Chen Q, Liu G, Chen Z, et al. A synergistically enhanced T(1)–T(2) dual-modal contrast agent. Adv Mater. 2012;24:6223–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34:470–80.

    Article  PubMed  CAS  Google Scholar 

  52. Sontyana AG, Mathew AP, Cho KH, Uthaman S, Park IK. Biopolymeric in situ hydrogels for tissue engineering and bioimaging applications. Tissue Eng Regen Med. 2018;15:575–90.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou T, Wu B, Xing D. Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem. 2012;22:470–7.

    Article  CAS  Google Scholar 

  54. Banstola A, Emami F, Jeong J-H, Yook S. Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromol Res. 2018;26:955–64.

    Article  CAS  Google Scholar 

  55. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomed. 2011;6:2859.

    CAS  Google Scholar 

  56. Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, et al. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem. 2012;22:15110–20.

    Article  CAS  Google Scholar 

  57. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, et al. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl Mater Interfaces. 2013;5:10357–66.

    Article  PubMed  CAS  Google Scholar 

  58. Hu Y, Yang J, Wei P, Li J, Ding L, Zhang G, et al. Facile synthesis of hyaluronic acid-modified Fe3O4/Au composite nanoparticles for targeted dual mode MR/CT imaging of tumors. J Mater Chem B. 2015;3:9098–108.

    Article  CAS  PubMed  Google Scholar 

  59. Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, et al. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc. 2012;134:10309–12.

    Article  PubMed  CAS  Google Scholar 

  60. Lee SY, Jeon SI, Jung S, Chung IJ, Ahn CH. Targeted multimodal imaging modalities. Adv Drug Deliv Rev. 2014;76:60–78.

    Article  PubMed  CAS  Google Scholar 

  61. Yin T, Wang P, Zheng R, Zheng B, Cheng D, Zhang X, et al. Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomed. 2012;7:895–904.

    CAS  Google Scholar 

  62. Shin T-H, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44:4501–16.

    Article  PubMed  CAS  Google Scholar 

  63. Park JI, Jagadeesan D, Williams R, Oakden W, Chung S, Stanisz GJ, et al. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities. ACS Nano. 2010;4:6579–86.

    Article  PubMed  CAS  Google Scholar 

  64. Huang HY, Hu SH, Hung SY, Chiang CS, Liu HL, Chiu TL, et al. SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J Control Release. 2013;172:118–27.

    Article  PubMed  CAS  Google Scholar 

  65. Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F, et al. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials. 2011;32:6155–63.

    Article  PubMed  CAS  Google Scholar 

  66. Huang D, Li D, Wang T, Shen H, Zhao P, Liu B, et al. Isoniazid conjugated poly (lactide-co-glycolide): long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials. 2015;52:417–25.

    Article  PubMed  CAS  Google Scholar 

  67. Xu S, Yang F, Zhou X, Zhuang Y, Liu B, Mu Y, et al. Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Appl Mater Interfaces. 2015;7:20460–8.

    Article  PubMed  CAS  Google Scholar 

  68. Liu WM, Xue YN, Peng N, He WT, Zhuo RX, Huang SW. Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novel strategy for magnetofection. J Mater Chem. 2011;21:13306–15.

    Article  CAS  Google Scholar 

  69. Xi L, Grobmyer SR, Wu L, Chen R, Zhou G, Gutwein LG, et al. Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging. Opt Express. 2012;20:8726–31.

    Article  PubMed  Google Scholar 

  70. Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol. 2018;8:24.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reguera J, Jiménez de Aberasturi D, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B, et al. Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale. 2017;9:9467–80.

    Article  PubMed  CAS  Google Scholar 

  72. Bouchard LS, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, et al. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci U S A. 2009;106:4085–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, et al. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express. 2012;3:2500–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Feng X, Gao F, Zheng Y. Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles. Opt Lett. 2014;39:3414–7.

    Article  PubMed  CAS  Google Scholar 

  75. Freund B, Tromsdorf UI, Bruns OT, Heine M, Giemsa A, Bartelt A, et al. A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano. 2012;6:7318–25.

    Article  PubMed  CAS  Google Scholar 

  76. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–19.

    Article  PubMed  CAS  Google Scholar 

  77. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32:4151–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Thomas G, Boudon J, Maurizi L, Moreau M, Walker P, Severin I, et al. Innovative magnetic nanoparticles for PET/MRI bimodal imaging. ACS Omega. 2019;4:2637–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sharma R, Xu Y, Kim SW, Schueller MJ, Alexoff D, Smith SD, et al. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale. 2013;5:7476–83.

    Article  PubMed  CAS  Google Scholar 

  80. Xu C, Shi S, Feng L, Chen F, Graves SA, Ehlerding EB, et al. Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale. 2016;8:12683–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in vivo dual-modality PET/MR imaging. Adv Mater. 2014;26:5119–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11:2560–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu J, Zhang W, Zhang H, Yang Z, Li T, Wang B, et al. A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem Commun (Camb). 2013;49:4938–40.

    Article  CAS  Google Scholar 

  84. Kwizera EA, Chaffin E, Wang Y, Huang X. Synthesis and properties of magnetic-optical core–shell nanoparticles. RSC Adv. 2017;7:17137–53.

    Article  PubMed  CAS  Google Scholar 

  85. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl. 2011;50:7385–90.

    Article  PubMed  CAS  Google Scholar 

  86. Shen S, Guo X, Wu L, Wang M, Wang X, Kong F, et al. Dual-core@shell-structured Fe3O4–NaYF4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J Mater Chem B. 2014;2:5775–84.

    Article  CAS  PubMed  Google Scholar 

  87. Zhong C, Yang P, Li X, Li C, Wang D, Gai S, et al. Monodisperse bifunctional Fe3O4@NaGdF4: Yb/Er@NaGdF4: Yb/Er core–shell nanoparticles. RSC Adv. 2012;2:3194–7.

    Article  CAS  Google Scholar 

  88. Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, et al. Core–shell NaYF4: Yb3+, Tm3+@ FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials. 2011;32:7200–8.

    Article  PubMed  CAS  Google Scholar 

  89. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110:2795–838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology. 2011;22:155101.

    Article  PubMed  CAS  Google Scholar 

  91. Rodríguez-Lorenzo L, de la Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater. 2012;11:604–7.

    Article  PubMed  CAS  Google Scholar 

  92. Gao L, Fei J, Zhao J, Li H, Cui Y, Li J. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano. 2012;6:8030–40.

    Article  PubMed  CAS  Google Scholar 

  93. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7:169–83.

    Article  PubMed  CAS  Google Scholar 

  94. Kwizera EA, Chaffin E, Shen X, Chen J, Zou Q, Wu Z, et al. Size- and shape-controlled synthesis and properties of magnetic–plasmonic core–shell nanoparticles. J Phys Chem C Nanomater Interfaces 2016;120:10530–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed Engl. 2006;45:7754–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bio & Medical Technology Development Program (Nos. NRF-2017M3A9F5030940 and NRF-2017M3A9E2056374) through the National Research Foundation of Korea (NRF) funded by the Korean government, MSIP; and the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2014M3C1A3053035). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A5A2024181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Seok Koh, Sangjoon Lee or In-Kyu Park.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillarisetti, S., Uthaman, S., Huh, K.M. et al. Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications. Tissue Eng Regen Med 16, 451–465 (2019). https://doi.org/10.1007/s13770-019-00218-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00218-7

Keywords

Navigation