Skip to main content
Log in

The Role of the Lysyl Oxidases in Tissue Repair and Remodeling: A Concise Review

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Tissue injury provokes a series of events containing inflammation, new tissue formation and tissue remodeling which are regulated by the spatially and temporally coordinated organization. It is an evolutionarily conserved, multi-cellular, multi-molecular process via complex signalling network. Tissue injury disorders present grievous clinical problems and are likely to increase since they are generally associated with the prevailing diseases such as diabetes, hypertension and obesity. Although these dynamic responses vary not only for the different types of trauma but also for the different organs, a balancing act between the tissue degradation and tissue synthesis is the same. In this process, the degradation of old extracellular matrix (ECM) elements and new ones’ synthesis and deposition play an essential role, especially collagens. Lysyl oxidase (LOX) and four lysyl oxidase-like proteins are a group of enzymes capable of catalyzing cross-linking reaction of collagen and elastin, thus initiating the formation of covalent cross-links that insolubilize ECM proteins. In this way, LOX facilitates ECM stabilization through ECM formation, development, maturation and remodeling. This ability determines its potential role in tissue repair and regeneration. In this review, based on the current in vitro, animal and human in vivo studies which have shown the significant role of the LOXs in tissue repair, e.g., tendon regeneration, ligament healing, cutaneous wound healing, and cartilage remodeling, we focused on the role of the LOXs in inflammation phase, proliferation phase, and tissue remodeling phase of the repair process. By summarizing its healing role, we hope to shed light on the understanding of its potential in tissue repair and provide up to date therapeutic strategies towards related injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andrew Chan KL, et al. A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology. J Cell Mol Med. 2008;12(5B):2145–54.

    Article  PubMed  CAS  Google Scholar 

  2. Frank S, Kampfer H. Excisional wound healing. An experimental approach. Methods Mol Med. 2003;78:3–15.

    PubMed  CAS  Google Scholar 

  3. Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143–79.

    Article  PubMed  CAS  Google Scholar 

  4. Tang Z, et al. Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. J Orthop Res. 2009;27(2):243–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19–20):2304–16.

    Article  PubMed  CAS  Google Scholar 

  6. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48(3):504–11.

    Article  PubMed  CAS  Google Scholar 

  7. Akagawa M, Suyama K. Characterization of a model compound for the lysine tyrosylquinone cofactor of lysyl oxidase. Biochem Biophys Res Commun. 2001;281(1):193–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kim Y, Boyd CD, Csiszar K. A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase. J Biol Chem. 1995;270(13):7176–82.

    Article  PubMed  CAS  Google Scholar 

  9. Saito H, et al. Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence. J Biol Chem. 1997;272(13):8157–60.

    Article  PubMed  CAS  Google Scholar 

  10. Jang W, et al. Comparative sequence of human and mouse BAC clones from the mnd2 region of chromosome 2p13. Genome Res. 1999;9(1):53–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Maki JM, Kivirikko KI. Cloning and characterization of a fourth human lysyl oxidase isoenzyme. Biochem J. 2001;355(Pt 2):381–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Asuncion L, et al. A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matrix Biol. 2001;20(7):487–91.

    Article  PubMed  CAS  Google Scholar 

  13. Jourdan-Le Saux C, et al. The mouse lysyl oxidase-like 2 gene (mLOXL2) maps to chromosome 14 and is highly expressed in skin, lung and thymus. Matrix Biol. 2000;19(2):179–83.

    Article  PubMed  CAS  Google Scholar 

  14. Maki JM. Lysyl oxidases in mammalian development and certain pathological conditions. Histol Histopathol. 2009;24(5):651–60.

    PubMed  CAS  Google Scholar 

  15. Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol. 2001;70:1–32.

    Article  PubMed  CAS  Google Scholar 

  16. Jung ST, et al. Purification of enzymatically active human lysyl oxidase and lysyl oxidase-like protein from Escherichia coli inclusion bodies. Protein Expr Purif. 2003;31(2):240–6.

    Article  PubMed  CAS  Google Scholar 

  17. Seve S, et al. Expression analysis of recombinant lysyl oxidase (LOX) in myofibroblastlike cells. Connect Tissue Res. 2002;43(4):613–9.

    Article  PubMed  CAS  Google Scholar 

  18. Molnar J, et al. Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta (BBA) Proteins Proteom. 2003;1647(1–2):220–4.

    Article  CAS  Google Scholar 

  19. Jourdan-Le Saux C, et al. The LOXL2 gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues. J Biol Chem. 1999;274(18):12939–44.

    Article  PubMed  CAS  Google Scholar 

  20. Huang Y, et al. Cloning and characterization of a human lysyl oxidase-like 3 gene (hLOXL3). Matrix Biol. 2001;20(2):153–7.

    Article  PubMed  CAS  Google Scholar 

  21. Grace VMB, Guruvayoorappan C. Lysyl oxidase: a potential target for cancer therapy. Inflammopharmacology. 2011;19(3):117–29.

    Article  PubMed  CAS  Google Scholar 

  22. Teppo S, et al. The hypoxic tumor microenvironment regulates invasion of aggressive oral carcinoma cells. Exp Cell Res. 2013;319(4):376–89.

    Article  PubMed  CAS  Google Scholar 

  23. Chvapil M, et al. Activity and extractability of lysyl oxidase and collagen proteins in developing granuloma tissue. Proc Soc Exp Biol Med. 1974;146(3):688–93.

    Article  PubMed  CAS  Google Scholar 

  24. Fushida-Takemura H, et al. Detection of lysyl oxidase gene expression in rat skin during wound healing. Arch Dermatol Res. 1996;288(1):7–10.

    Article  PubMed  CAS  Google Scholar 

  25. Coulombe PA. Wound epithelialization: accelerating the pace of discovery. J Invest Dermatol. 2003;121(2):219–30.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou D, et al. Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res. 2005;23(4):949–57.

    Article  PubMed  CAS  Google Scholar 

  27. Brines M. Discovery of a master regulator of injury and healing: tipping the outcome from damage toward repair. Mol Med. 2014;20(Suppl 1):S10–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bogaard HJ, et al. Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans. Am J Respir Cell Mol Biol. 2012;46(5):582–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pascual G, et al. Down-regulation of lysyl oxydase-like in aging and venous insufficiency. Histol Histopathol. 2008;23(2):179–86.

    PubMed  CAS  Google Scholar 

  30. Urashima T, et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295(3):H1351–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  32. Mankus C, et al. The P2X(7) receptor regulates proteoglycan expression in the corneal stroma. Mol Vis. 2012;18:128–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Giampuzzi M, et al. Lysyl oxidase activates the transcription activity of human collagene III promoter. Possible involvement of Ku antigen. J Biol Chem. 2000;275(46):36341–9.

    Article  PubMed  CAS  Google Scholar 

  34. Laplante AF, et al. Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J. 2001;15(13):2377–89.

    Article  PubMed  CAS  Google Scholar 

  35. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31(6):674–86 (discussion 686).

    Article  PubMed  CAS  Google Scholar 

  36. Clark RA. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci. 1993;306(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  37. Maki JM. Inactivation of the lysyl oxidase gene lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation. 2002;106(19):2503–9.

    Article  PubMed  CAS  Google Scholar 

  38. Hong HH, et al. A role for lysyl oxidase regulation in the control of normal collagen deposition in differentiating osteoblast cultures. J Cell Physiol. 2004;200(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  39. Liu X, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36(2):178–82.

    Article  PubMed  CAS  Google Scholar 

  40. Kim YM, Kim EC, Kim Y. The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol Biol Rep. 2011;38(1):145–9.

    Article  PubMed  CAS  Google Scholar 

  41. Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling. Hypertension. 2006;48(1):98–104.

    Article  PubMed  CAS  Google Scholar 

  42. Kim MS, et al. Expression and purification of enzymatically active forms of the human lysyl oxidase-like protein 4. J Biol Chem. 2003;278(52):52071–4.

    Article  PubMed  CAS  Google Scholar 

  43. Bais M, et al. Transcriptional analysis of fracture healing and the induction of embryonic stem cell-related genes. PLoS ONE. 2009;4(5):e5393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Iftikhar M, et al. Lysyl oxidase-like-2 (LOXL2) is a major isoform in chondrocytes and is critically required for differentiation. J Biol Chem. 2011;286(2):909–18.

    Article  PubMed  CAS  Google Scholar 

  45. Majewski M, et al. Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. Am J Sports Med. 2009;37(11):2117–25.

    Article  PubMed  Google Scholar 

  46. Boak AM, et al. Regulation of lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta 1 and prostaglandin E2. Am J Respir Cell Mol Biol. 1994;11(6):751–5.

    Article  PubMed  CAS  Google Scholar 

  47. Green RS, et al. Identification of lysyl oxidase and other platelet-derived growth factor-inducible genes in vascular smooth muscle cells by differential screening. Lab Invest. 1995;73(4):476–82.

    PubMed  CAS  Google Scholar 

  48. Feres-Filho EJ, Menassa GB, Trackman PC. Regulation of lysyl oxidase by basic fibroblast growth factor in osteoblastic MC3T3-E1 cells. J Biol Chem. 1996;271(11):6411–6.

    Article  PubMed  CAS  Google Scholar 

  49. Feres-Filho EJ, et al. Pre- and post-translational regulation of lysyl oxidase by transforming growth factor-β 1 in osteoblastic MC3T3-E1 cells. J Biol Chem. 1995;270(51):30797–803.

    Article  PubMed  CAS  Google Scholar 

  50. Adam O, et al. Increased lysyl oxidase expression and collagen cross-linking during atrial fibrillation. J Mol Cell Cardiol. 2011;50(4):678–85.

    Article  PubMed  CAS  Google Scholar 

  51. Reiser K, et al. Effects of elevated circulating IGF-1 on the extracellular matrix in “high-growth” C57BL/6J mice. Am J Physiol. 1996;271(3 Pt 2):R696–703.

    PubMed  CAS  Google Scholar 

  52. Balgobin S, et al. Estrogen alters remodeling of the vaginal wall after surgical injury in guinea pigs. Biol Reprod. 2013;89(6):138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Erler JT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440(7088):1222–6.

    Article  PubMed  CAS  Google Scholar 

  54. Song YL, et al. Regulation of lysyl oxidase by interferon-γ in rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000;20(4):982–8.

    Article  PubMed  CAS  Google Scholar 

  55. Xie J, et al. TNF-α induced down-regulation of lysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts. Knee. 2014;21(1):47–53.

    Article  PubMed  Google Scholar 

  56. Rodriguez C, et al. Low density lipoproteins downregulate lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol. 2002;22(9):1409–14.

    Article  PubMed  CAS  Google Scholar 

  57. Omori K, et al. Regulation of the expression of lysyl oxidase mRNA in cultured rabbit retinal pigment epithelium cells. Matrix Biol. 2002;21(4):337–48.

    Article  PubMed  CAS  Google Scholar 

  58. Thaler R, et al. Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J Biol Chem. 2011;286(7):5578–88.

    Article  PubMed  CAS  Google Scholar 

  59. Papacleovoulou G, et al. IL1α and IL4 signalling in human ovarian surface epithelial cells. J Endocrinol. 2011;211(3):273–83.

    Article  PubMed  CAS  Google Scholar 

  60. Jakab L. Connective tissue and inflammation. Orv Hetil. 2014;155(12):453–60.

    Article  PubMed  Google Scholar 

  61. Rao MC, et al. Effect of dehydrozingerone, a half analog of curcumin on dexamethasone-delayed wound healing in albino rats. Mol Cell Biochem. 2011;355(1–2):249–56.

    Article  PubMed  CAS  Google Scholar 

  62. Holzheimer RG, Steinmetz W. Local and systemic concentrations of pro- and anti-inflammatory cytokines in human wounds. Eur J Med Res. 2000;5(8):347–55.

    PubMed  CAS  Google Scholar 

  63. Nuthakki VK, et al. Lysyl oxidase expression in a rat model of arterial balloon injury. J Vasc Surg. 2004;40(1):123–9.

    Article  PubMed  Google Scholar 

  64. Pathi SD, et al. Recovery of the injured external anal sphincter after injection of local or intravenous mesenchymal stem cells. Obstet Gynecol. 2012;119(1):134–44.

    Article  PubMed  CAS  Google Scholar 

  65. Olaso E, et al. Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling. Fibrogenes Tissue Repair. 2011;4(1):5.

    Article  CAS  Google Scholar 

  66. Van Bergen T, et al. The role of LOX and LOXL2 in scar formation after glaucoma surgery. Invest Ophthalmol Vis Sci. 2013;54(8):5788–96.

    Article  PubMed  CAS  Google Scholar 

  67. Barry-Hamilton V, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009–17.

    Article  PubMed  CAS  Google Scholar 

  68. Xie J, et al. Differential expressions of lysyl oxidase family in ACL and MCL fibroblasts after mechanical injury. Injury. 2013;44(7):893–900.

    Article  PubMed  Google Scholar 

  69. Wang C, et al. Differential expressions of the lysyl oxidase family and matrix metalloproteinases-1, 2, 3 in posterior cruciate ligament fibroblasts after being co-cultured with synovial cells. Int Orthop. 2015;39(1):183–91.

    Article  PubMed  Google Scholar 

  70. Tang Z, et al. Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: involvement of the p65 subunit of NF-κB. Wound Repair Regen. 2009;17(5):709–16.

    Article  PubMed  Google Scholar 

  71. Poniatowski LA, et al. Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediat Inflamm. 2015;2015:137823.

    Article  CAS  Google Scholar 

  72. Pan X, et al. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS ONE. 2013;8(4):e60335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Xie J, et al. Up-regulation expressions of lysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts induced by transforming growth factor-β 1. Int Orthop. 2012;36(1):207–13.

    Article  PubMed  Google Scholar 

  74. Alcudia JF, et al. Lysyl oxidase and endothelial dysfunction: mechanisms of lysyl oxidase down-regulation by pro-inflammatory cytokines. Front Biosci. 2008;13:2721–7.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang Y, et al. Influence of TNF-IL1α and IL4 signalling in human ovarian surface epithelial cells and biomechanical stress on matrix metalloproteinases and lysyl oxidases expressions in human knee synovial fibroblasts. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):1997–2006.

    Article  PubMed  Google Scholar 

  76. Xie J, et al. Interleukin-1 beta influences on lysyl oxidases and matrix metalloproteinases profile of injured anterior cruciate ligament and medial collateral ligament fibroblasts. Int Orthop. 2013;37(3):495–505.

    Article  PubMed  Google Scholar 

  77. Saito M, et al. Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif Tissue Int. 2004;75(5):384–95.

    Article  PubMed  CAS  Google Scholar 

  78. Aydin S, et al. Influence of microvascular endothelial cells on transcriptional regulation of proximal tubular epithelial cells. Am J Physiol Cell Physiol. 2008;294(2):C543–54.

    Article  PubMed  CAS  Google Scholar 

  79. Kagan HM. Lysyl oxidase: mechanism, regulation and relationship to liver fibrosis. Pathol Res Pract. 1994;190(9–10):910–9.

    Article  PubMed  CAS  Google Scholar 

  80. Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol. 1997;29(1):79–89.

    Article  PubMed  CAS  Google Scholar 

  81. Kenyon NJ, et al. TGF-β1 causes airway fibrosis and increased collagen I and III mRNA in mice. Thorax. 2003;58(9):772–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kaufmann J, et al. Hydroxypyridinium collagen crosslinks in serum, urine, synovial fluid and synovial tissue in patients with rheumatoid arthritis compared with osteoarthritis. Rheumatol (Oxf). 2003;42(2):314–20.

    Article  CAS  Google Scholar 

  83. Milward MR, et al. Micronutrient modulation of NF-κB in oral keratinocytes exposed to periodontal bacteria. Innate Immun. 2013;19(2):140–51.

    Article  PubMed  CAS  Google Scholar 

  84. Chen F, Zhang Z, Zhu X. Inhibition of development of experimental abdominal aortic aneurysm by c-jun N-terminal protein kinase inhibitor combined with lysyl oxidase gene modified smooth muscle progenitor cells. Eur J Pharmacol. 2015;766:114–21.

    Article  PubMed  CAS  Google Scholar 

  85. Paul RG, et al. Biomechanical and biochemical study of a standardized wound healing model. Int J Biochem Cell Biol. 1997;29(1):211–20.

    Article  PubMed  CAS  Google Scholar 

  86. Lenselink EA. Role of fibronectin in normal wound healing. Int Wound J. 2015;12(3):313–6.

    Article  PubMed  Google Scholar 

  87. Singer AJ, Clark RAF. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.

    Article  PubMed  CAS  Google Scholar 

  88. Ranzer MJ, Chen L, DiPietro LA. Fibroblast function and wound breaking strength is impaired by acute ethanol intoxication. Alcohol Clin Exp Res. 2011;35(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  89. Kessides MC, Khachemoune A. A review of epidermal maturation arrest: a unique entity or another description of persistent granulation tissue? J Clin Aesthet Dermatol. 2014;7(12):46–50.

    PubMed  PubMed Central  Google Scholar 

  90. Szauter KM, et al. Lysyl oxidase in development, aging and pathologies of the skin. Pathol Biol (Paris). 2005;53(7):448–56.

    Article  CAS  Google Scholar 

  91. Brown LF, et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176(5):1375–9.

    Article  PubMed  CAS  Google Scholar 

  92. Couffinhal T, et al. Mouse model of angiogenesis. Am J Pathol. 1998;152(6):1667–79.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Nomura T, et al. β2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin Cancer Res. 2006;12(24):7294–305.

    Article  PubMed  CAS  Google Scholar 

  94. Byeseda SE, et al. ICAM-1 is necessary for epithelial recruitment of γδ T cells and efficient corneal wound healing. Am J Pathol. 2009;175(2):571–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Bhatwadekar AD, et al. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells. Invest Ophthalmol Vis Sci. 2009;50(10):4967–73.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bignon M, et al. Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood. 2011;118(14):3979–89.

    Article  PubMed  CAS  Google Scholar 

  97. Darby IA, et al. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.

    PubMed  PubMed Central  Google Scholar 

  98. Harrison CA, et al. Use of an in vitro model of tissue-engineered skin to investigate the mechanism of skin graft contraction. Tissue Eng. 2006;12(11):3119–33.

    Article  PubMed  CAS  Google Scholar 

  99. Brinckmann J, et al. Different pattern of collagen cross-links in two sclerotic skin diseases: lipodermatosclerosis and circumscribed scleroderma. J Invest Dermatol. 2001;117(2):269–73.

    Article  PubMed  CAS  Google Scholar 

  100. Woodley DT, et al. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction. J Invest Dermatol. 1991;97(3):580–5.

    Article  PubMed  CAS  Google Scholar 

  101. Namazi MR, Fallahzadeh MK, Schwartz RA. Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol. 2011;50(1):85–93.

    Article  PubMed  Google Scholar 

  102. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012;3(3):20.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gilad GM, Kagan HM, Gilad VH. Lysyl oxidase, the extracellular matrix-forming enzyme, in rat brain injury sites. Neurosci Lett. 2001;310(1):45–8.

    Article  PubMed  CAS  Google Scholar 

  104. Colwell AS, et al. Early-gestation fetal scarless wounds have less lysyl oxidase expression. Plast Reconstr Surg. 2006;118(5):1125–9 (discussion 1130-1).

    Article  PubMed  CAS  Google Scholar 

  105. Soo C, et al. Ontogenetic transition in fetal wound transforming growth factor-β regulation correlates with collagen organization. Am J Pathol. 2003;163(6):2459–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003;48(3):314–46.

    Article  PubMed  Google Scholar 

  107. Karsdal MA, et al. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol. 2013;11(2):70–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Williamson AK, et al. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21(5):872–80.

    Article  PubMed  CAS  Google Scholar 

  109. Williamson AK, et al. Growth of immature articular cartilage in vitro: correlated variation in tensile biomechanical and collagen network properties. Tissue Eng. 2003;9(4):625–34.

    Article  PubMed  CAS  Google Scholar 

  110. Asanbaeva A, et al. Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile. Osteoarth Cartil. 2008;16(1):1–11.

    Article  CAS  Google Scholar 

  111. Lafont A, et al. Endothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty. Circulation. 1999;100(10):1109–15.

    Article  PubMed  CAS  Google Scholar 

  112. Ricard-Blum S, et al. Mechanism of collagen network stabilization in human irreversible granulomatous liver fibrosis. Gastroenterology. 1996;111(1):172–82.

    Article  PubMed  CAS  Google Scholar 

  113. Brasselet C, et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33.

    Article  PubMed  CAS  Google Scholar 

  114. Schultz G, et al. Effects of growth factors on corneal wound healing. Acta Ophthalmol Suppl. 1992;202:60–6.

    Google Scholar 

  115. Hou Y, et al. The roles of TGF-β1 gene transfer on collagen formation during Achilles tendon healing. Biochem Biophys Res Commun. 2009;383(2):235–9.

    Article  PubMed  CAS  Google Scholar 

  116. Ashcroft GS, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nat Med. 1997;3(11):1209–15.

    Article  PubMed  CAS  Google Scholar 

  117. Eliasson P, Andersson T, Aspenberg P. Rat Achilles tendon healing: mechanical loading and gene expression. J Appl Physiol. 2009;107(2):399–407.

    Article  PubMed  Google Scholar 

  118. Saito M, Soshi S, Fujii K. Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res. 2003;18(9):1695–705.

    Article  PubMed  CAS  Google Scholar 

  119. Martinez DA, et al. Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1552–60.

    Article  PubMed  CAS  Google Scholar 

  120. Chen YJ, et al. Differential regulation of collagen, lysyl oxidase and MMP-2 in human periodontal ligament cells by low- and high-level mechanical stretching. J Periodontal Res. 2013;48(4):466–74.

    Article  PubMed  CAS  Google Scholar 

  121. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17(2):153–62.

    Article  PubMed  Google Scholar 

  122. Lau Y, West J. The effect of overexpression of lysyl oxidase on dermal wound healing. Mol Ther. 2005;11:303.

    Google Scholar 

  123. Chronopoulos A, et al. High glucose increases lysyl oxidase expression and activity in retinal endothelial cells: mechanism for compromised extracellular matrix barrier function. Diabetes. 2010;59(12):3159–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kawamura S, Lotito K, Rodeo SA. Biomechanics and healing response of the meniscus. Oper Tech Sports Med. 2003;11(2):68–76.

    Article  Google Scholar 

  126. Gebremariam L, et al. Evaluation of treatment effectiveness for the herniated cervical disc: a systematic review. Spine (Phila Pa 1976). 2012;37(2):E109–18.

    Article  Google Scholar 

  127. Guilak F, et al. Biomechanics and mechanobiology in functional tissue engineering. J Biomech. 2014;47(9):1933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Scotti C, et al. Healing of meniscal tissue by cellular fibrin glue: an in vivo study. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):645–51.

    Article  PubMed  CAS  Google Scholar 

  129. Fomovsky GM, Rouillard AD, Holmes JW. Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J Mol Cell Cardiol. 2012;52(5):1083–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Rouillard AD, Holmes JW. Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts. J Physiol. 2012;590(Pt 18):4585–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. MacBarb RF, et al. Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials. 2013;34(38):9980–9.

    Article  PubMed  CAS  Google Scholar 

  132. Palamakumbura AH, Trackman PC. A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal Biochem. 2002;300(2):245–51.

    Article  PubMed  CAS  Google Scholar 

  133. Eleswarapu SV, Responte DJ, Athanasiou KA. Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint. PLoS ONE. 2011;6(10):e26178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Marturano JE, et al. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci USA. 2013;110(16):6370–5.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.

    Article  PubMed  CAS  Google Scholar 

  136. Bastiaansen-Jenniskens YM, et al. Contribution of collagen network features to functional properties of engineered cartilage. Osteoarthr Cartil. 2008;16(3):359–66.

    Article  PubMed  CAS  Google Scholar 

  137. Balguid A, et al. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets–relevance for tissue engineering. Tissue Eng. 2007;13(7):1501–11.

    Article  PubMed  CAS  Google Scholar 

  138. Athens AA, Makris EA, Hu JC. Induced collagen cross-links enhance cartilage integration. PLoS ONE. 2013;8(4):e60719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Elbjeirami WM, et al. Enhancing mechanical properties of tissue-engineered constructs via lysyl oxidase crosslinking activity. J Biomed Mater Res A. 2003;66(3):513–21.

    Article  PubMed  CAS  Google Scholar 

  140. Makris EA, et al. Combined use of chondroitinase-ABC, TGF-β1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair. Biomaterials. 2014;35(25):6787–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. DiMicco MA, et al. Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthr Cartil. 2002;10(3):218–25.

    Article  PubMed  CAS  Google Scholar 

  142. Kuzuya M, et al. Glycation cross-links inhibit matrix metalloproteinase-2 activation in vascular smooth muscle cells cultured on collagen lattice. Diabetologia. 2001;44(4):433–6.

    Article  PubMed  CAS  Google Scholar 

  143. Beekman B, et al. Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell-matrix interaction. Exp Cell Res. 1997;237(1):135–41.

    Article  PubMed  CAS  Google Scholar 

  144. Wong M, et al. Collagen fibrillogenesis by chondrocytes in alginate. Tissue Eng. 2002;8(6):979–87.

    Article  PubMed  CAS  Google Scholar 

  145. Ahsan T, et al. Integrative cartilage repair: inhibition by β-aminopropionitrile. J Orthop Res. 1999;17(6):850–7.

    Article  PubMed  CAS  Google Scholar 

  146. McGowan KB, Sah RL. Treatment of cartilage with β-aminopropionitrile accelerates subsequent collagen maturation and modulates integrative repair. J Orthop Res. 2005;23(3):594–601.

    Article  PubMed  CAS  Google Scholar 

  147. van Vlimmeren MA, et al. Controlling matrix formation and cross-linking by hypoxia in cardiovascular tissue engineering. J Appl Physiol. 2010;109(5):1483–91.

    Article  PubMed  CAS  Google Scholar 

  148. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–80.

    Article  PubMed  CAS  Google Scholar 

  149. Pak O, et al. The effects of hypoxia on the cells of the pulmonary vasculature. Eur Respir J. 2007;30(2):364–72.

    Article  PubMed  CAS  Google Scholar 

  150. Balguid A, et al. Hypoxia induces near-native mechanical properties in engineered heart valve tissue. Circulation. 2009;119(2):290–7.

    Article  PubMed  Google Scholar 

  151. Shukunami C, et al. Chondromodulin-I and tenomodulin are differentially expressed in the avascular mesenchyme during mouse and chick development. Cell Tissue Res. 2008;332(1):111–22.

    Article  PubMed  CAS  Google Scholar 

  152. Zhang Y, et al. Enhanced proliferation capacity of porcine tenocytes in low O2 tension culture. Biotechnol Lett. 2010;32(2):181–7.

    Article  PubMed  CAS  Google Scholar 

  153. Makris EA, Hu JC, Athanasiou KA. Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage. Osteoarthr Cartil. 2013;21(4):634–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kothapalli CR, Ramamurthi A. Lysyl oxidase enhances elastin synthesis and matrix formation by vascular smooth muscle cells. J Tissue Eng Regen Med. 2009;3(8):655–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Kothapalli CR, et al. Transforming growth factor β 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells. Tissue Eng A. 2009;15(3):501–11.

    Article  CAS  Google Scholar 

  156. Kothapalli CR, Ramamurthi A. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater. 2009;5(2):541–53.

    Article  PubMed  CAS  Google Scholar 

  157. Brown DA, et al. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol Bioeng. 2007;97(4):962–75.

    Article  PubMed  CAS  Google Scholar 

  158. Makris EA, et al. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking. Proc Natl Acad Sci USA. 2014;111(45):E4832–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Dean RG, et al. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem. 2005;53(10):1245–56.

    Article  PubMed  CAS  Google Scholar 

  160. Voloshenyuk TG, et al. Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine. 2011;55(1):90–7.

    Article  PubMed  CAS  Google Scholar 

  161. Shyu KG, et al. Mechanism of the inhibitory effect of atorvastatin on endoglin expression induced by transforming growth factor-β1 in cultured cardiac fibroblasts. Eur J Heart Fail. 2010;12(3):219–26.

    Article  PubMed  CAS  Google Scholar 

  162. Fu Y, et al. The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor β-induced Smad signaling in human ovarian cancer cells. Biochem Biophys Res Commun. 2003;310(2):391–7.

    Article  PubMed  CAS  Google Scholar 

  163. Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver Int. 2006;26(1):8–22.

    Article  PubMed  Google Scholar 

  164. Yokoyama U, et al. Prostaglandin E2 inhibits elastogenesis in the ductus arteriosus via EP4 signaling. Circulation. 2014;129(4):487–96.

    Article  PubMed  CAS  Google Scholar 

  165. Ma YC, et al. Src tyrosine kinase is a novel direct effector of G proteins. Cell. 2000;102(5):635–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded Funding of State Key Laboratory of Oral Diseases (SKLOD201527), the youth start-up fund (2015SCU11013) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (201510610117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangli Kong or Jing Xie.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Ethical Statement

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Xiong, X., Kong, X. et al. The Role of the Lysyl Oxidases in Tissue Repair and Remodeling: A Concise Review. Tissue Eng Regen Med 14, 15–30 (2017). https://doi.org/10.1007/s13770-016-0007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0007-0

Keywords

Navigation