Skip to main content

Advertisement

Log in

Exosomes in the Real World of Medical Aesthetics: A Review

  • Review
  • Non-Surgical Aesthetic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Exosomes are cell-derived nanovesicles that transport proteins, nucleic acids, and lipids and play a significant role in almost every physiological process in the human body. They have generated great interest, especially in the field of tissue regeneration. Studies in the last decade support their great regenerating and rejuvenating potential. However, the lack of standardized procedures, limited knowledge regarding their action mechanism, and little clinical evidence impair their implementation and approval in the medical setting. This review aimed to identify published studies and clinical trials using exosomes in human patients for clinical treatments in aesthetic medicine.

Materials and Methods

A systematic search was conducted in the PubMed database using the search term “exosomes” and 25 terms related to aesthetic medicine treatments in human patients. Additionally, a search was conducted in the ClinicalTrials.gov database for interventional clinical trials using exosomes for aesthetic treatments in adults 18 to ≥ 65 years of age.

Results

Nine articles were selected after debugging the initial list of published articles in which exosomes were related to Aesthetic Medicine (633 articles). Nine studies were identified from the initial search on ClinicalTrial.gov (104 trials with exosomes).

Conclusions

There is no doubt about the scientific basis of exosome regenerative potential and the growing interest in exosomes in Aesthetic Medicine. However, companies must spend more on research to develop standardized and reliable procedures to obtain exosomes for their approval and application in clinical practice.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  • This review highlights the large amount of published research on exosomes related to aesthetic medicine and, at the same time, the lack of products approved by regulatory agencies.

  • Several issues have been suggested to elucidate a response, such as the need for standardized protocols and more knowledge to ensure safe treatments.

  • It also highlights the few clinical trials conducted to evaluate exosome properties in aesthetic medicine treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xiong M, Zhang Q, Hu W et al (2021) The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 166:105490. https://doi.org/10.1016/j.phrs.2021.105490

    Article  CAS  PubMed  Google Scholar 

  2. Zhang B, Gong J, He L et al (2022) Exosomes based advancements for application in medical aesthetics. Front Bioeng Biotechnol 10:1083640. https://doi.org/10.3389/fbioe.2022.1083640

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chavda VP, Pandya A, Kumar L et al (2023) Exosome nanovesicles: a potential carrier for therapeutic delivery. Nano Today 49:101771. https://doi.org/10.1016/j.nantod.2023.101771

    Article  CAS  Google Scholar 

  4. Li X, Corbett AL, Taatizadeh E et al (2019) Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng 3:011503. https://doi.org/10.1063/1.5087122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang Z, Liu G, Li J (2020) Recent progress on the isolation and detection methods of exosomes. Chem Asian J 15:3973–3982. https://doi.org/10.1002/asia.202000873

    Article  CAS  PubMed  Google Scholar 

  6. Dai Y, Chen Y, Hu Y, Zhang L (2022) Current knowledge and future perspectives on exosomes in the field of regenerative medicine: a bibliometric analysis. Regen Med 18:123–136. https://doi.org/10.2217/rme-2022-0141

    Article  CAS  PubMed  Google Scholar 

  7. Logozzi M, Di Raimo R, Mizzoni D, Fais S (2022) The potentiality of plant-derived nanovesicles in human health—a comparison with human exosomes and artificial nanoparticles. Int J Mol Sci 23:4919. https://doi.org/10.3390/ijms23094919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarasati A, Syahruddin MH, Nuryanti A et al (2023) Plant-derived exosome-like nanoparticles for biomedical applications and regenerative therapy. Biomedicines 11:1053. https://doi.org/10.3390/biomedicines11041053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koçak P, Unsal N, Canikyan S et al (2023) The effect of hybrosome (umbilical cord blood exosome-liposome hybrid vesicles) on human dermal cells in vitro. Aesthet Surg J Open Forum 5:ojad086. https://doi.org/10.1093/asjof/ojad039

    Article  Google Scholar 

  10. Qiu X, Liu J, Zheng C et al (2020) Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif 53(8):e12830. https://doi.org/10.1111/cpr.12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang H, Hou H, Yi W et al (2013) Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury‡. Eur Heart J 34:1681–1690. https://doi.org/10.1093/eurheartj/ehr131

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Kim MS, Jia B et al (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548:52–57. https://doi.org/10.1038/nature23282

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moutsatsou P, Ochs J, Schmitt RH et al (2019) Automation in cell and gene therapy manufacturing: from past to future. Biotechnol Lett 41:1245–1253. https://doi.org/10.1007/s10529-019-02732-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brembilla NC, Vuagnat H, Boehncke W-H et al (2023) Adipose-derived stromal cells for chronic wounds: scientific evidence and roadmap toward clinical practice. Stem Cells Transl Med 12:17–25. https://doi.org/10.1093/stcltm/szac081

    Article  PubMed  Google Scholar 

  15. Ku YC, Sulaiman HO, Anderson SR, Abtahi AR (2023) The potential role of exosomes in aesthetic plastic surgery: a review of current literature. Plast Reconstr Surg Glob Open 11(6):5051. https://doi.org/10.1097/GOX.0000000000005051

    Article  Google Scholar 

  16. Chernoff G (2023) Combining topical dermal infused exosomes with injected calcium hydroxylapatite for enhanced tissue biostimulation. J Cosmet Dermatol 22:15–27. https://doi.org/10.1111/jocd.15695

    Article  PubMed  Google Scholar 

  17. Han HS, Koh YG, Hong JK et al (2023) Adipose-derived stem cell exosomes for treatment of dupilumab-related facial redness in patients with atopic dermatitis. J Dermatol Treat 34:2220444. https://doi.org/10.1080/09546634.2023.2220444

    Article  CAS  Google Scholar 

  18. Wang T, Gao H, Wang D et al (2023) Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg Med 55:178–189. https://doi.org/10.1002/lsm.23628

    Article  PubMed  Google Scholar 

  19. Proffer SL, Paradise CR, DeGrazia E et al (2022) Efficacy and tolerability of topical platelet exosomes for skin rejuvenation: six-week results. Aesthet Surg J 42:1185–1193. https://doi.org/10.1093/asj/sjac149

    Article  PubMed  Google Scholar 

  20. Park KY, Han HS, Park JW et al (2022) Exosomes derived from human adipose tissue-derived mesenchymal stem cells for the treatment of dupilumab-related facial redness in patients with atopic dermatitis: a report of two cases. J Cosmet Dermatol 21:844–849. https://doi.org/10.1111/jocd.14153

    Article  PubMed  Google Scholar 

  21. Ye C, Zhang Y, Su Z et al (2022) hMSC exosomes as a novel treatment for female sensitive skin: an in vivo study. Front Bioeng Biotechnol 10:1053679. https://doi.org/10.3389/fbioe.2022.1053679

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jang B, Chung H, Jung H et al (2021) Extracellular vesicles from korean Codium fragile and Sargassum fusiforme negatively regulate melanin synthesis. Mol Cells 44:736–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho BS, Lee J, Won Y et al (2020) Skin brightening efficacy of exosomes derived from human adipose tissue-derived stem/stromal cells: a prospective, split-face randomized placebo-controlled study. Cosmetics 7(4):90. https://doi.org/10.3390/cosmetics7040090

    Article  CAS  Google Scholar 

  24. Kwon H, Yang S, Lee J et al (2020) combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: A 12-week prospective, double-blind, randomized Split-face Study. Acta Derm Venereol 100:adv00310. https://doi.org/10.2340/00015555-3666

    Article  CAS  PubMed  Google Scholar 

  25. Muthu S, Bapat A, Jain R et al (2021) Exosomal therapy—a new frontier in regenerative medicine. Stem Cell Investig 8:7–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma Z-J, Yang J-J, Lu Y-B et al (2020) Mesenchymal stem cell-derived exosomes: toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 12:814–840. https://doi.org/10.4252/wjsc.v12.i8.814

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang K, Cheng K (2023) Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng 1:608–609. https://doi.org/10.1038/s44222-023-00064-2

    Article  Google Scholar 

  28. Xiong M, Zhang Q, Hu W et al (2020) Exosomes from adipose-derived stem cells: the emerging roles and applications in tissue regeneration of plastic and cosmetic surgery. Front Cell Dev Biol 8:574223. https://doi.org/10.3389/fcell.2020.574223

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bosholm CC, Zhu H, Yu P et al (2023) Therapeutic benefits of stem cells and exosomes for sulfur-mustard-induced tissue damage. Int J Mol Sci 24:9947. https://doi.org/10.3390/ijms24129947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Committee for Medicinal Products for Human Use (CHMP) (2022) Guideline on the requirements for quality documentation concerning biological investigational medicinal products in clinical trials. European Medicines Agency, UK

    Google Scholar 

  31. Ilic N, Savic S, Siegel E et al (2012) Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Australia: part II—a method of software documentary analysis. Stem Cells Transl Med 1:909–920. https://doi.org/10.5966/sctm.2012-0038

    Article  PubMed  PubMed Central  Google Scholar 

  32. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER) (2014) Guidance for industry: reference product exclusivity for biological products filed under section 351 (a) of the PHS Act

  33. Kee LT, Ng CY, Al-Masawa ME et al (2022) Extracellular vesicles in facial aesthetics: a review. Int J Mol Sci 23:6742. https://doi.org/10.3390/ijms23126742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asadpour A, Hisham Yahaya B, Bicknell K et al (2023) Research open access uncovering the gray zone: mapping the global landscape of direct-to-consumer businesses offering interventions based on secretomes, extracellular vesicles, and exosomes. Stem Cell Res Ther 14:111. https://doi.org/10.1186/s13287-023-03335-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. (2023) ISEV2023 abstract book. J Extracell Vesicles 12:e12329. https://doi.org/10.1002/jev2.12329

  36. O’Driscoll L, Stoorvogel W, Théry C et al (2017) European network on microvesicles and exosomes in health and disease (ME-HaD). Eur J Pharm Sci 98:1–3. https://doi.org/10.1016/j.ejps.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  37. Ilic N, Savic S, Siegel E et al (2012) Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Australia: part I—A method of manual documentary analysis. Stem Cells Transl Med 1:898–908. https://doi.org/10.5966/sctm.2012-0037

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen Y-S, Lin E-Y, Chiou T-W, Harn H-J (2020) Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med J 32:113. https://doi.org/10.4103/tcmj.tcmj_182_19

    Article  CAS  Google Scholar 

  39. Becker RA, Janus ER, White RD et al (2009) Good laboratory practices and safety assessments. Environ Health Perspect 117(11):A482–A483. https://doi.org/10.1289/ehp.0900884

    Article  PubMed  PubMed Central  Google Scholar 

  40. European Medicines Agency (n.d.) Good distribution practice (GDP). https://www.ema.europa.eu/en/human-regulatory/post-authorisation/compliance/good-distribution-practice. Accessed 23 Oct 2023

  41. Vijayananthan A, Nawawi O (2008) The importance of Good Clinical Practice guidelines and its role in clinical trials. Biomed Imaging Interv J 4(1):e5. https://doi.org/10.2349/biij.4.1.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Wilder P (2012) Advanced therapy medicinal products and exemptions to the regulation 1394/2007: How confident can we be? An exploratory analysis. Front Pharmacol 3:12. https://doi.org/10.3389/fphar.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hernández Sanz C, Pinto H (2023) Efficacy of photo-thermal-bioactivated platelet-rich plasma for skin biostimulation in patients not eligible for other medical-aesthetic treatment: a pilot study. Skin Res Technol 29(7):e13412. https://doi.org/10.1111/srt.13412

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mercuri SR, Di Nicola MR, Bianchi VG, Paolino G (2023) Adult-onset linear morphea (en coupe de sabre) of the face successfully treated with photoactivated low-temperature platelet-rich plasma: a valid therapeutic option. Medicina (B Aires) 59:1114. https://doi.org/10.3390/medicina59061114

    Article  Google Scholar 

  45. Beltrán B, Sánchez MAR, Melamed G, Pinto H (2023) Efficacy and safety of photothermal-bioactivated platelet-rich plasma for facial rejuvenation. J Cosmet Dermatol 22:671–673. https://doi.org/10.1111/jocd.15250

    Article  PubMed  Google Scholar 

  46. Pinto H (2020) Photoactivation of autologous materials with a new reliable, safe and effective set-up. Aesthet Med 6:11–15

    Google Scholar 

  47. Yi YW, Lee JH, Kim S-Y et al (2020) Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci 21:665. https://doi.org/10.3390/ijms21020665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Bi J, Huang J et al (2020) Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 15:6917–6934. https://doi.org/10.2147/IJN.S264498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takov K, Yellon DM, Davidson SM (2019) Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. J Extracell Vesicles 8(1):1560809. https://doi.org/10.1080/20013078.2018.1560809

    Article  CAS  PubMed  Google Scholar 

  50. Jia Y, Yu L, Ma T et al (2022) Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics 12:6548–6575. https://doi.org/10.7150/thno.74305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park K-S, Bandeira E, Shelke GV et al (2019) Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 10:288. https://doi.org/10.1186/s13287-019-1398-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu Q, Fu S, Xiao H et al (2023) Advances in extracellular vesicle nanotechnology for precision theranostics. Adv Sci 10(3):e2204814. https://doi.org/10.1002/advs.202204814

    Article  Google Scholar 

  53. Lee JH, Ha DH, Go H et al (2020) Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int J Mol Sci 21:4774. https://doi.org/10.3390/ijms21134774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gimona M, Pachler K, Laner-Plamberger S et al (2017) Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int J Mol Sci 18:1190. https://doi.org/10.3390/ijms18061190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao J, Li A, Hu J et al (2023) Recent developments in isolating methods for exosomes. Front Bioeng Biotechnol 10:1100892. https://doi.org/10.3389/fbioe.2022.1100892

    Article  PubMed  PubMed Central  Google Scholar 

  56. Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y (2018) Preservation of exosomes at room temperature using lyophilization. Int J Pharm 553:1–7. https://doi.org/10.1016/j.ijpharm.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  57. Kusuma GD, Barabadi M, Tan JL et al (2018) To protect and to preserve: novel preservation strategies for extracellular vesicles. Front Pharmacol 9:1199. https://doi.org/10.3389/fphar.2018.01199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakase I, Ueno N, Matsuzawa M et al (2021) Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio 11:753–767. https://doi.org/10.1002/2211-5463.13107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng Y, Zeng Q, Han Q, Xia W (2019) Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 10:295–299. https://doi.org/10.1007/s13238-018-0529-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Sánchez-Vizcaíno Mengual.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 65 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, H., Sánchez-Vizcaíno Mengual, E. Exosomes in the Real World of Medical Aesthetics: A Review. Aesth Plast Surg (2024). https://doi.org/10.1007/s00266-023-03844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00266-023-03844-8

Keywords

Navigation