Skip to main content
Log in

Fabrication of an osteochondral graft with using a solid freeform fabrication system

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Current approaches for the engineering of osteochondral grafts are associated with poor tissue formation and compromised integration at the interface between the cartilage and bone layers. Many researchers have attempted to provide osteochondral grafts of combined cartilage and bone for osteochondral repair to help overcome the limitations of standard procedures. Solid freeform fabrication is recognized as a promising tool for creating tissue engineering scaffolds due to advantages such as superior interconnectivity and a highly porous structure. This study aimed to develop a three-dimensional plotting system to enable the manufacturing of a biphasic graft consisting cartilage and subchondral bone for application to osteochondral defects. The material advantages of both synthetic (poly L lactide-co-polyglycolide) and natural (alginate) polymers were combined for a supporting frame and cell printing. Specifically, in order to promote the maturity of the osteochondral graft in our study, cartilage-derived ECM (cECM) or hydroxyapatate (HA) substances blended with alginate was plotted together with human fetal cartilage-derived progenitor cells in the cartilage or subchondral bone layer under a multi-nozzle deposition system. Notably, a plotted biphasic graft shows good integration between cartilage and subchondral bone layers without structural separation. Furthermore, the non-toxicity of the cECM and HA substances were proved from a live/dead assay of plotted cell-laden alginate. A fabricated osteochondral graft with cECM and HA substances showed dominant cartilage and bone tissue formation in a differentiation assay. Future studies should be done to modify the alginate physical properties for long-lasting structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integration of engineered cartilage. J Orthop Res 2001;19:1089–1097.

    Article  CAS  PubMed  Google Scholar 

  2. Choi JW, Choi BH, Park SH, Pai KS, Li TZ, Min BH, et al. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artif Organs 2013;37:648–655.

    Article  CAS  PubMed  Google Scholar 

  3. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001;7:679–689.

    CAS  PubMed  Google Scholar 

  4. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cellseeding density and culture period. J Biomed Mater Res 2000;51:376–382.

    Article  CAS  PubMed  Google Scholar 

  5. Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 2007;1:261–273.

    Article  CAS  PubMed  Google Scholar 

  6. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004;86-A:1541–1558.

    PubMed  Google Scholar 

  7. Sharma S, Srivastava D, Grover S, Sharma V. Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res 2014;8:309–315.

    PubMed Central  PubMed  Google Scholar 

  8. Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: a year in review. Tissue Eng Part B Rev 2014;20:1–16.

    Article  PubMed  Google Scholar 

  9. Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 2012;97:83–93.

    Article  CAS  PubMed  Google Scholar 

  10. Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 2011;98:160–170.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 2014;6:024103.

    Article  PubMed  Google Scholar 

  12. Lantada AD, Morgado PL. Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu Rev Biomed Eng 2012;14:73–96.

    Article  CAS  PubMed  Google Scholar 

  13. Derby B. Printing and prototyping of tissues and scaffolds. Science 2012;338:921–926.

    Article  CAS  PubMed  Google Scholar 

  14. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 2013 Jan 24 [Epub]. http://dx.doi.org/10.1002/term.1682.

    Google Scholar 

  15. Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, et al. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med 2012;23:2993–3002.

    Article  CAS  PubMed  Google Scholar 

  16. Kang SW, Lee SJ, Kim JS, Choi EH, Cha BH, Shim JH, et al. Effect of a scaffold fabricated thermally from acetylated PLGA on the formation of engineered cartilage. Macromol Biosci 2011;11:267–274.

    Article  CAS  PubMed  Google Scholar 

  17. Shim JH, Kim JY, Park JK, Hahn SK, Rhie JW, Kang SW, et al. Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate. J Biomater Sci Polym Ed 2010;21:1069–1080.

    Article  CAS  PubMed  Google Scholar 

  18. Owen SC, Shoichet MS. Design of three-dimensional biomimetic scaffolds. J Biomed Mater Res A 2010;94:1321–1331.

    PubMed  Google Scholar 

  19. Vats A, Tolley NS, Polak JM, Gough JE. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 2003;28:165–172.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 2006;12:1325–1335.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, de Isla N, Huselstein C, Wang B, Netter P, Stoltz JF, et al. Effect of alginate culture and mechanical stimulation on cartilaginous matrix synthesis of rat dedifferentiated chondrocytes. Biomed Mater Eng 2008;18(1 Suppl):S47–S54.

    CAS  PubMed  Google Scholar 

  22. Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 2009;131:111002.

    Article  PubMed  Google Scholar 

  23. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012;33:6020–6041.

    Article  CAS  PubMed  Google Scholar 

  24. Wake MC, Patrick CW Jr, Mikos AG. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 1994;3:339–343.

    CAS  PubMed  Google Scholar 

  25. Shim JH, Kim AJ, Park JY, Yi N, Kang I, Park J, et al. Effect of solid freeform fabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes. J Mater Sci Mater Med 2013;24:1053–1065.

    Article  CAS  PubMed  Google Scholar 

  26. Wahl DA, Sachlos E, Liu C, Czernuszka JT. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 2007;18:201–209.

    Article  CAS  PubMed  Google Scholar 

  27. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 2012;18:33–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Goessler UR, Hörmann K, Riedel F. Tissue engineering with chondrocytes and function of the extracellular matrix (Review). Int J Mol Med 2004;13:505–513.

    CAS  PubMed  Google Scholar 

  29. Jin CZ, Park SR, Choi BH, Park K, Min BH. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Artif Organs 2007;31:183–192.

    Article  CAS  PubMed  Google Scholar 

  30. Choi KH, Song BR, Choi BH, Lee M, Park SR, Min BH. Cartilage tissue engineering using chondrocyte-derived extracellular matrix scaffold suppressed vessel invasion during chondrogenesis of mesenchymal stem cells in vivo. Tissue Eng Regen Med 2012;9:43–50.

    Article  CAS  Google Scholar 

  31. Jin CZ, Choi BH, Park SR, Min BH. Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J Biomed Mater Res A 2010;92:1567–1577.

    PubMed  Google Scholar 

  32. Choi KH, Choi BH, Park SR, Kim BJ, Min BH. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials 2010;31:5355–5365.

    Article  CAS  PubMed  Google Scholar 

  33. Li TZ, Jin CZ, Choi BH, Kim MS, Kim YJ, Park SR, et al. Using cartilage extracellular matrix (CECM) membrane to enhance the reparability of the bone marrow stimulation technique for articular cartilage defect in canine model. Adv Funct Mater 2012;22:4292–4300.

    Article  CAS  Google Scholar 

  34. Karadzic I, Vucic V, Jokanovic V, Debeljak-Martacic J, Markovic D, Petrovic S, et al. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2015;103:350–357.

    Article  PubMed  Google Scholar 

  35. Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, et al. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatitebased artificial bone. Tissue Eng Part A 2014;20:2291–2304.

    Article  CAS  PubMed  Google Scholar 

  36. Hashimoto Y, Adachi S, Matsuno T, Omata K, Yoshitaka Y, Ozeki Y, et al. Effect of an injectable 3D scaffold for osteoblast differentiation depends on bead size. Biomed Mater Eng 2009;19:391–400.

    CAS  PubMed  Google Scholar 

  37. van Gool SA, Emons JA, Leijten JC, Decker E, Sticht C, van Houwelingen JC, et al. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage. PLoS One 2012;7:e44561.

    Article  Google Scholar 

  38. Brady K, Dickinson SC, Guillot PV, Polak J, Blom AW, Kafienah W, et al. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev 2014;23:541–554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Hyug Park or Byoung-Hyun Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.S., Choi, W.H., Song, B.R. et al. Fabrication of an osteochondral graft with using a solid freeform fabrication system. Tissue Eng Regen Med 12, 239–248 (2015). https://doi.org/10.1007/s13770-015-0001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0001-y

Key Words

Navigation