Skip to main content
Log in

Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Scaffolds are an important aspect of the tissue engineering approach to tissue regeneration. This study shows that it is possible to manufacture scaffolds from type I collagen with or without hydroxyapatite (HA) by critical point drying. The mean pore sizes of the scaffolds can be altered from 44 to 135 μm depending on the precise processing conditions. Such pore sizes span the range that is likely to be required for specific cells. The mechanical properties of the scaffolds have been measured and behave as expected of foam structures. The degradation rate of the scaffolds by collagenase is independent of pore size. Dehydrothermal treatment (DHT), a common method of physically crosslinking collagen, was found to denature the collagen at a temperature of 120C resulting in a decrease in the scaffold’s resistance to collagenase. Hybrid scaffold structures have also been manufactured, which have the potential to be used in the generation of multi-tissue interfaces. Microchannels are neatly incorporated via an indirect solid freeform fabrication (SFF) process, which could aid in reducing the different constraints commonly observed with other scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. CORTESINI, Transpl. Immunol. 15 (2005) 81.

    Article  CAS  Google Scholar 

  2. F. R. ROSE and R. O. C. OREFFO, Biochem. Biophys. Res. Commun. 292 (2002) 1.

    Article  CAS  Google Scholar 

  3. S. DEDHAR et al., J. Cell Biol. 104 (1987) 585.

    Article  CAS  Google Scholar 

  4. W. D. STAATZ et al., J. Biol. Chem. 266 (1991) 7363.

    CAS  Google Scholar 

  5. G. T. CRAIG et al., Biomaterials 10 (1989) 133.

    Article  CAS  Google Scholar 

  6. E. LANDI et al., J. Eur. Ceram. Soc. 23 (2003) 2931.

    Article  CAS  Google Scholar 

  7. A. L. BOSKEY, Calcif. Tissue Int. 63 (1998) 179.

    Article  CAS  Google Scholar 

  8. D. A. WAHL and J. CZERNUSZKA, Eur. Cell. Mater. J. 11 (2006) 43.

    CAS  Google Scholar 

  9. V. KARAGEORGIOU and D. KAPLAN, Biomaterials 26 (2005) 5474.

    Article  CAS  Google Scholar 

  10. M. NOMI et al., Mol. Aspects Med. 23 (2002) 463.

    CAS  Google Scholar 

  11. E. TSURUGA et al., J. Biochem. 121 (1997) 317.

    CAS  Google Scholar 

  12. F. J. O’BRIEN et al., Biomaterials 26 (2005) 433.

    Article  CAS  Google Scholar 

  13. E. SACHLOS and J. CZERNUSZKA, Eur. Cell. Mater. J. 5 (2003) 29.

    CAS  Google Scholar 

  14. M. LEE et al., Biomaterials 26 (2005) 4281.

    Article  CAS  Google Scholar 

  15. H. S. TUAN and D. W. HUTMACHER, Comput. Aided Des. 37 (2005) 1151.

    Article  Google Scholar 

  16. S. J. HOLLISTER et al., Biomaterials 23 (2002) 4095.

    Article  CAS  Google Scholar 

  17. B. LEUKERS et al., J. Mater. Sci. Mater. Med. 16 (2005) 1121.

    Article  CAS  Google Scholar 

  18. I. MARTIN et al., J. Biomech. In Press (2006).

  19. E. SACHLOS et al., Biomaterials 24 (2003) 1487.

    Article  CAS  Google Scholar 

  20. E. SACHLOS et al., Mater. Res. Soc. Symp. Proc. 758 (2003) 187.

  21. K. WEADOCK et al., Biomater. Med. Devices Artif. Organs 11 (1983) 293.

    Google Scholar 

  22. Y. TAKAHASHI and Y. TABATA, J. Biomater. Sci. Polym. Ed. 15 (2004) 41.

    Article  CAS  Google Scholar 

  23. K. TUZLAKOGLU et al., J. Mater. Sci. Mater. Med. 16 (2005) 1099.

    Article  CAS  Google Scholar 

  24. M. ITOH et al., Biomaterials 25 (2004) 2577.

    Article  CAS  Google Scholar 

  25. F. R. ROSE et al., Biomaterials 25 (2004) 5507.

    Article  CAS  Google Scholar 

  26. I. V. YANNAS, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C 7 (1972) 49.

    CAS  Google Scholar 

  27. I. REHMAN and W. BONFIELD, J. Mater. Sci. Mater. Med. 8 (1997) 1.

    Article  CAS  Google Scholar 

  28. G. C. KOUMOULIDIS et al., J. Coll. Interf. Sci. 259 (2003) 254.

    Article  CAS  Google Scholar 

  29. A. KOCIALKOWSKI et al., Injury 21 (1990) 142.

    Article  CAS  Google Scholar 

  30. B. D. BOYAN et al., Biomaterials 17 (1996) 137.

    Article  CAS  Google Scholar 

  31. U. MEYER et al., Eur. Cell. Mater. J. 9 (2005) 39.

    CAS  Google Scholar 

  32. E. SACHLOS, D Phil thesis, Oxford University (2004) 77.

  33. M. F. ASHBY and D. R. H. JONES, in “Engineering Materials 2: An Introduction to Microstructures, Processing and Design” (Pergamon Press, 1986) p. 250.

  34. H. SCHOOF et al., J. Crystal Growth 209 (2000) 122.

    Article  CAS  Google Scholar 

  35. I. V. YANNAS and A. V. TOBOLSKY, Nature 215 (1967) 509.

    Article  CAS  Google Scholar 

  36. P. ANGELE et al., Biomaterials 25 (2004) 2831.

    Article  CAS  Google Scholar 

  37. W. BONFIELD, et al., Acta Materialia 46 (1998) 2509.

    Article  CAS  Google Scholar 

  38. W. E. HENNINK and C. F. VAN NOSTRUM, Adv. Drug. Deliv. Rev. 54 (2002) 13.

    Article  CAS  Google Scholar 

  39. K. S. WEADOCK et al., J. Biomed. Mater. Res. 32 (1996) 221.

    Article  CAS  Google Scholar 

  40. M. GEIGER, PhD thesis, Friedrich-Alexander-Universität Erlangen (2001) 84.

  41. S. D. GORHAM, et al., Int. J. Biol. Macromol. 14 (1992) 129.

    Article  CAS  Google Scholar 

  42. M.-C. WANG, et al., Biomaterials 15 (1994) 507.

    Article  CAS  Google Scholar 

  43. A. BIGI et al., Biomaterials 25 (2004) 5675.

    Article  CAS  Google Scholar 

  44. T. J. WESS and J. P. ORGEL, Thermochimica Acta 365 (2000) 119.

    Article  CAS  Google Scholar 

  45. P. J. KELLY, J. Bone Joint Surg. Am. 50 (1968) 766.

    CAS  Google Scholar 

  46. M. ARTICO et al., Surg. Neurol. 60 (2003) 71.

    Article  Google Scholar 

  47. R. R. BETZ, Orthopedics 25 (2002) S561.

    Google Scholar 

  48. D. SCHAEFER et al., Arthritis Rheum. 46 (2002) 2524.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denys A. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, D.A., Sachlos, E., Liu, C. et al. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci: Mater Med 18, 201–209 (2007). https://doi.org/10.1007/s10856-006-0682-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0682-9

Keywords

Navigation