Skip to main content
Log in

Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Monascus species are filamentous ascomycetes fungi and produce azaphilone (Az) pigment that is a well-known food colorant. Az is a class of fungal polyketides that bears a highly oxygenated pyranoquinone bicyclic core and is produced by a nonreducing fungal polyketide synthase with a reductive release domain (NR-fPKS-R). MpPKS5 encodes an NR-fPKS-R for Monascus Az (MAz) and is clustered with four oxidoreductase genes including mppG; mpp designates Monascus pigment production. MAz pigments are classified as yellow and orange MAz, and their structures differ in two hydride reductions with yellow MAz as the reduced type. The biosynthesis of yellow MAz (monascin, Y-1 and ankaflavin, Y-2) is completed by a reductive pathway involving a reductase gene mppE. This reductive pathway is diverged from a common MAz pathway involving two other reductase genes of mppA and mppC. This suggests that the biosynthesis of orange MAz (rubropunctatin, O-1 and monascorubrin, O-2) is completed by an oxidative branch pathway and the cognate oxidative role of mppG is genetically characterized in the present study. A targeted gene inactivation mutant of ΔmppG displayed a severe impairment in the production of orange MAz with no significant alteration in the level of yellow MAz. The feeding experiment with Y-1 in ΔMpPKS5 indicated that Y-1 could not be converted into O-1, which excludes the possibility that mppG mediates the conversion of yellow into orange MAz. This study supports the existence of divergent pathways in MAz biosynthesis and creates a recombinant strain for the selective production of yellow MAz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao JM, Yang SX, Qin JC (2013) Azaphilones: chemistry and biology. Chem Rev 113:4755–4811

    Article  CAS  Google Scholar 

  2. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    Article  CAS  Google Scholar 

  3. Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181

    Article  CAS  Google Scholar 

  4. Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345

    Article  CAS  Google Scholar 

  5. Shi K, Chen G, Pistolozzi M, Xia F, Wu Z (2016) Improved analysis of Monascus pigments based on their pH-sensitive UV–Vis absorption and reactivity properties. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:1396–1401

    Article  CAS  Google Scholar 

  6. Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    Article  CAS  Google Scholar 

  7. Mapari SA, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  CAS  Google Scholar 

  8. Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  CAS  Google Scholar 

  9. Lee CL, Pan TM (2012) Development of Monascus fermentation technology for high hypolipidemic effect. Appl Microbiol Biotechnol 94:1449–1459

    Article  CAS  Google Scholar 

  10. Lee CL, Kung YH, Wu CL, Hsu YW, Pan TM (2010) Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013–9019

    Article  CAS  Google Scholar 

  11. Lee CL, Wen JY, Hsu YW, Hsu YW, Pan TM (2016) The blood lipid regulation of Monascus-produced monascin and ankaflavin via the suppression of low-density lipoprotein cholesterol assembly and stimulation of apolipoprotein A1 expression in the liver. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2016.06.003

    Google Scholar 

  12. Lee CL, Hung YP, Hsu YW, Pan TM (2013) Monascin and ankaflavin have more anti-atherosclerosis effect and less side effect involving increasing creatinine phosphokinase activity than monacolin K under the same dosages. J Agric Food Chem 61:143–150

    Article  CAS  Google Scholar 

  13. Hsu WH, Pan TM (2014) Treatment of metabolic syndrome with ankaflavin, a secondary metabolite isolated from the edible fungus Monascus spp. Appl Microbiol Biotechnol 98:4853–4863

    Article  CAS  Google Scholar 

  14. Hsu WH, Pan TM (2014) A novel PPARgamma agonist monascin’s potential application in diabetes prevention. Food Funct 5:1334–1340

    Article  CAS  Google Scholar 

  15. Hsu LC, Liang YH, Hsu YW, Kuo YH, Pan TM (2013) Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J Agric Food Chem 61:2796–2802

    Article  CAS  Google Scholar 

  16. Chang YY, Hsu WH, Pan TM (2015) Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells. J Agric Food Chem 63:192–199

    Article  CAS  Google Scholar 

  17. Lee CL, Wen JY, Hsu YW, Pan TM (2013) Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J Agric Food Chem 61:1493–1500

    Article  CAS  Google Scholar 

  18. Shi YC, Pan TM (2011) Beneficial effects of Monascus purpureus NTU 568-fermented products: a review. Appl Microbiol Biotechnol 90:1207–1217

    Article  CAS  Google Scholar 

  19. Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L (2015) Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng 120:145–154

    Article  CAS  Google Scholar 

  20. Xiong X, Zhang X, Wu Z, Wang Z (2015) Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 99:1173–1180

    Article  CAS  Google Scholar 

  21. Hu M, Zhang X, Wang Z (2016) Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water–edible oil two-phase system. Bioprocess Biosyst Eng 39:1785–1791

    Article  CAS  Google Scholar 

  22. Mo SJ, Suh JW (2016) Elucidation of first step of the allylmalonyl-CoA biosynthetic pathway by expression of heterologous KSIII gene and enhancement of 36-methyl-FK506 production by genetic and chemical engineering. Appl Biol Chem 59:77–88

    Article  CAS  Google Scholar 

  23. Joo M, Yoo HG, Kim HJ, Kwon HJ (2015) ToxB encodes a canonical GTP cyclohydrolase II in toxoflavin biosynthesis and ribA expression restored toxoflavin production in a ΔtoxB mutant. J Korean Soc Appl Biol Chem 58:877–885

    Article  CAS  Google Scholar 

  24. Balakrishnan B, Chen CC, Pan TM, Kwon HJ (2014) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett 55:1640–1643

    Article  CAS  Google Scholar 

  25. Bijinu B, Suh JW, Park SH, Kwon HJ (2014) Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv 4:59405–59408

    Article  CAS  Google Scholar 

  26. Zabala AO, Xu W, Chooi YH, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19:1049–1059

    Article  CAS  Google Scholar 

  27. Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, Kwon HJ (2014) Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Korean Soc Appl Biol Chem 57:191–196

    Article  CAS  Google Scholar 

  28. Balakrishnan B, Park SH, Kwon HJ (2017) A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol Lett 39:163–169

    Article  CAS  Google Scholar 

  29. Chen C, Wang Y, Su C, Zhao XQ, Li M, Meng XW, Jin YY, Yang SH, Ma YS, Wei DZ, Suh JW (2015) Antifungal activity of Streptomyces albidoflavus L131 against the leaf mold pathogen Passalora fulva involves membrane leakage and oxidative damage. J Korean Soc Appl Biol Chem 58:111–119

    Article  CAS  Google Scholar 

  30. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  Google Scholar 

  31. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2008) Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 3:1671–1678

    Article  Google Scholar 

  32. Lee H, Kim E, Shin Y, Lee JH, Hur HG, Kim JH (2016) Identification and formation pattern of metabolites of cyazofamid by soil fungus Cunninghamella elegans. Appl Biol Chem 59:9–14

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B02009237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jin Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, B., Park, SH. & Kwon, HJ. Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus . Appl Biol Chem 60, 437–446 (2017). https://doi.org/10.1007/s13765-017-0296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-017-0296-6

Keywords

Navigation