Skip to main content
Log in

A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To characterize a biosynthetic gene that is selectively involved in the biosynthesis of yellow or orange components in the azaphilone polyketide pathway of Monascus.

Results

A reductive modification is predicted to control the relative levels of reduced (yellow) and oxidized (orange and red) components in the pathway of azaphilone pigment biosynthesis in Monascus. Targeted inactivation of a reductase gene mppE enhanced orange and red pigment production whereas overexpression of the gene promoted yellow pigment production. The effect of mppE overexpression was dependent on culture methods, and augmented yellow pigmentation was evident in a submerged culture employing a chemically defined medium.

Conclusions

MppE controls the biosynthesis of the yellow pigments, ankaflavin and monascin, as a reductive enzyme in the azaphilone polyketide pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan B, Chen CC, Pan TM, Kwon HJ (2014a) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett 55:1640–1643

    Article  CAS  Google Scholar 

  • Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, Kwon HJ (2014b) Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Kor Soc Appl Biol Chem 57:191–196

    Article  CAS  Google Scholar 

  • Bijinu B, Suh JW, Park SH, Kwon HJ (2014) Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv 4:59405–59408

    Article  CAS  Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    Article  CAS  PubMed  Google Scholar 

  • Hsu YW, Hsu LC, Liang YH, Kuo YH, Pan TM (2010) Monaphilones A−C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem 58:8211–8216

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Choi YD, Chang YJ, Kim SU (2003) Genetic transformation of Monascus purpureus DSM1379. Biotechnol Lett 25:1509–1514

    Article  CAS  PubMed  Google Scholar 

  • Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  CAS  PubMed  Google Scholar 

  • Mapari SA, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  CAS  PubMed  Google Scholar 

  • Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant Microbe Interact 14:580–584

    Article  CAS  PubMed  Google Scholar 

  • Ogihara J, Kato J, Oishi K, Fujimoto Y (2001) PP-R, 7-(2-hydroxyethyl)-monascorubramine, a red pigment produced in the mycelia of Penicillium sp. AZ. J Biosci Bioeng 91:44–47

    Article  CAS  PubMed  Google Scholar 

  • Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Chen G, Pistolozzi M, Xia F, Wu Z (2016) Improved analysis of Monascus pigments based on their pH-sensitive UV–vis absorption and reactivity properties. Food Addit Contam. doi:10.1080/19440049.2016.1214289

    Google Scholar 

  • Wang TH, Lin TF (2007) Monascus rice products. Adv Food Nutr Res 53:123–159

    Article  CAS  PubMed  Google Scholar 

  • Xie N, Liu Q, Chen F (2013) Deletion of pigR gene in Monascus ruber leads to loss of pigment production. Biotechnol Lett 35:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Zabala AO, Xu W, Chooi YH, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19:1049–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2059458 and NRF-2016R1D1A1B02009237).

Supporting information

Supplementary Table 1—Primers used.

Supplementary Fig. 1—LC-MS analysis for identification of MAz compounds in the extract.

Supplementary Fig. 2—Pigment content and profile of the organic extracts from PDB cultures.

Supplementary Fig. 3—Structures of the compounds other than 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jin Kwon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, B., Park, SH. & Kwon, HJ. A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus . Biotechnol Lett 39, 163–169 (2017). https://doi.org/10.1007/s10529-016-2232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2232-y

Keywords

Navigation