Skip to main content
Log in

Enzymatic profiling of wild edible mushrooms consumed by the ethnic tribes of India

  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Wild edible macrofungi are known to produce a wide range of biologically active metabolites and enzymes. In the present study, macrofungi consumed by the mycophillic ethnic tribes of India were collected from the local markets and forest habitats and identified based on their morphology. They belonged to ten different species under nine genera and eight families. Amylase, cellulase, protease, tyrosinase and laccase enzymes of the macrofungi were investigated. Two strains of Lactarius showed higher activity of the enzyme laccase and were subjected to further purification and analysis. The partially purified laccases from these two strains showed efficient dye decolourization ability when tested against four different synthetic dyes. The present investigation suggests the potential of these wild edible macrofungi in the production of biotechnologically important enzymes for use in an array of applications from pharmaceuticals to treatment of chemical and biological effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrahar-Murugkar D and Subbulakshmi G (2005) Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem 89, 599–603.

    Article  CAS  Google Scholar 

  • Annunziatini C, Baiocco P, Gerini MF, Lanzalunga O, and Sjögren B (2005) Aryl substituted N-hydroxyphthalimides as mediators in the laccasecatalysed oxidation of lignin model compounds and delignification of wood pulp. J Mol Catal B Enzym 32, 89–96.

    Article  CAS  Google Scholar 

  • Barua P, Adhikary RK, Kalita P, Bordoloi D, Gogol P, Singh RS et al. (1998) Wild edible mushrooms of Meghalaya. Ancient Sci Life 3, 190–193.

    Google Scholar 

  • Bernfeld P (1955) Amylases alpha and beta. In Method in enzymology, Colowick SP and Kaplan ON (1st ed.), pp. 140–146, Academic Press, USA.

    Google Scholar 

  • Calik P, Calik G, and Ozdamar TH (1998) Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: use of citric acid as the carbon source. Enzyme Microb Technol 23, 451–461.

    Article  CAS  Google Scholar 

  • Chang TM (2012) Tyrosinase and Tyrosinase Inhibitors. J Biocatal Biotransformation 1, 1–2.

    Article  Google Scholar 

  • Chen DM, Bastias BA, Taylor AFS, and Cairney JWG (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157, 547–554.

    Article  CAS  Google Scholar 

  • Colak A, Sahin E, Yildirim M, and Sesli E (2007) Polyphenol oxidase potentials of three wild mushroom species harvested from Liser High Plateau, Trabzon. Food Chem 103, 1426–1433.

    Article  CAS  Google Scholar 

  • Courty P-E, Pouysegur R, Buée M, and Garbaye J (2006) Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biol Biochem 38, 1219–1222.

    Article  CAS  Google Scholar 

  • Daba AS, Youssef GA, Kabeil SS, and Hafez EE (2011) Production of recombinant cellulase enzyme from Pleurotus ostreatus (Jacq.) P. Kumm. (type NRRL-0366). Afr J Microbiol Res 5, 1197–1202.

    CAS  Google Scholar 

  • Department of Environment and Forests (2005) State of Environment report, HMSO, India.

    Google Scholar 

  • Diez VA and Alvarez A (2001) Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. Food Chem 75, 417–422.

    Article  CAS  Google Scholar 

  • Ding Z, Peng L, Chen Y, Zhang L, Gu Z, Shi G et al. (2012) Production and characterization of thermostable laccase from the mushroom, Ganoderma lucidum, using submerged fermentation. Afr J Microbiol Res 6, 1147–1157.

    CAS  Google Scholar 

  • Duckworth HW and Coleman JE (1970) Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem 245, 1613–1625.

    CAS  Google Scholar 

  • Eliana PC and Lucia RD (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microbiol Technol 29, 473–477.

    Article  Google Scholar 

  • Erden E, Ucar MC, Gezer T, and Pazarlioglu NK (2009) Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of remazole marine blue. Braz J Microbiol 40, 346–353.

    Article  CAS  Google Scholar 

  • Faria ROD, Moure VR, Amazonas MALA, Krieger N, and Mitchell DA (2007) Biotechnology of Mushroom Tyrosinases. Food Technol Biotechnol 45, 287–294.

    Google Scholar 

  • Ferreira VS, Magalhaes DB, Kling SH, Da Silva, Junior JG, and Bon EP (2000) N-Demethylation of methylene blue by lignin peroxidises from Phanerochaete chrysosporium. Appl Biochem Biotechnol 84–6, 255–265.

    Article  Google Scholar 

  • Goud MJP, Suryam A, Lakshmipathi V, and Singara Charya MA (2009) Extracellular hydrolytic enzyme profiles of certain South Indian basidiomycetes. Afr J Biotechnol 8, 354–360.

    CAS  Google Scholar 

  • Haghbeen K, Jazii FR, Karkhane AA, and Borojerd SS (2004) Purification of tyrosinase from edible mushroom. Iranian J Biotech 2, 189–194.

    CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot JC, Hamdi M, and Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100, 219–232.

    Article  CAS  Google Scholar 

  • Heinzkill M, Bech L, Halkier T, Schneider P, and Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64(5), 1601–1606.

    CAS  Google Scholar 

  • Hou H, Zhou J, Wang J, Du C, and Yan B (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Proc Biochem 39, 1415–1419.

    Article  CAS  Google Scholar 

  • Hur TC, Ka KH, Joo SH, and Terashita T (2001) Characteristics of the amylase and its related enzymes produced by ectomycorrhizal fungus Tricholoma matsutake. Mycobiology 29, 183–189.

    CAS  Google Scholar 

  • James JA and Lee BH (1997) Glucoamylases: microbial sources, industrial applications and molecular biology — a review. J Food Biochem 21, 1–52.

    Article  CAS  Google Scholar 

  • Jaouani A, Guillén, F, Penninckx MJ, Martínez AT, and Martínez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb Technol 36, 478–486.

    Article  CAS  Google Scholar 

  • Jonathan SG and Adeoyo OR (2011) Effect of environmental and nutritional factors on mycelial biomass yield of ten wild Nigerian mushrooms during cellulase and amylase production. Mycobiology 39, 103–108.

    Article  CAS  Google Scholar 

  • Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, and Sakharov IY (2003) Laccase catalyzed synthesis of conducting polyaniline. Enzyme Microb Technol 33, 556–564.

    Article  CAS  Google Scholar 

  • Khammuang S and Sarnthima R (2009) Mediator-assisted Rhodamine B decolorization by Trametes versicolor laccase. Pakistan J Biol Sci 12, 616–623.

    Article  CAS  Google Scholar 

  • Khaund P and Joshi SR (2013) Wild edible macrofungal species consumed by the Khasi tribe of Meghalaya, India. Indian J Nat Prod Resour 4, 197–204.

    Google Scholar 

  • Kim JH and Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci Biotechnol Bioch 65, 356–362.

    Article  CAS  Google Scholar 

  • Kolcuog¢ Lu Y, Colak A, Sesli E, Yildirim M, and Saglam N (2007) Comparative characterization of monophenolase and diphenolase activities from a wild edible mushroom (Macrolepiota mastoidea). Food Chem 101, 778–785.

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  Google Scholar 

  • Lee CY, Hong OP, Jung MJ, and Han YH (1998) The extracellular enzyme activities in culture broth of T matsutake. Kor J Mycol 26, 496–501.

    Google Scholar 

  • Li M, Zhang G, Wang H, and Ng TJ (2010) Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum. Microbiol Biotechnol 20, 1069–1076.

    Article  CAS  Google Scholar 

  • Liu L, Lin Z, Zheng T, Lin L, Zheng CQ, Lin ZX et al. (2009) Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb Technol 44, 426–433.

    Article  CAS  Google Scholar 

  • Lorenzo M, Moldes D, Couto SR, and Sanromán A (2002) Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour Technol 82, 109–113.

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193, 265–275.

    CAS  Google Scholar 

  • Luis P, Walther G, Kellner H, Martin F, and Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36, 1025–1036.

    Article  CAS  Google Scholar 

  • Ma C, Ni X, Chi Z, Ma L, and Gao L (2007) Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar Biotechnol NY 9, 343–351.

    Article  CAS  Google Scholar 

  • Mandels M, Andreotti R, and Roche R (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6, 17–37.

    Google Scholar 

  • Martirani L, Giardina P, Marzullo L, and Sannia G (1996) Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus. Water Res 30, 1914–1918.

    Article  CAS  Google Scholar 

  • Nagai M, Sato T, Watanabe H, Saito K, Kawata M, and Enei H (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. App Microbiol Biotechnol 60, 327–335.

    Article  CAS  Google Scholar 

  • Ng TB and Wang HX (2004) A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochem Biophys Res Commun 313, 37–41.

    Article  CAS  Google Scholar 

  • Nyanhongo GS, Gomes J, Gübitz GM, Zvauya R, Read J, and Steiner W (2002) Decolorization of textile dyes by laccase from a newly isolated strain of Trametes modesta. Water Res 36, 1449–1456.

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Desiderio B, Marzullo L, Giamberini M, and Sannia G (1993) A new enzyme immobilization procedure using copper alginate gel: application to a fungal phenol oxidase. Enzyme Microb Technol 16, 151–158.

    Article  Google Scholar 

  • Pandey A, Nigam P, Socol CR, Socol VT, Singh D, and Mohan R (2000) Advances in microbial amylases — review. Biotechnol Appl Biochem 31, 135–152.

    Article  CAS  Google Scholar 

  • Parlade J, Pera J, and Luque J (2004) Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14, 171–176.

    Article  Google Scholar 

  • Philippidis GP (1994). In Enzymatic Conversion of Biomass for Fuel Production, ME Himmel, Baker JO, and Overend RP (eds.), Cellulase production technology, 188–217, ACS symposium series 566, USA.

    Google Scholar 

  • Purkayastha RP and Chandra A (1985) In Manual of Indian Edible Mushrooms, Today and Tomorrow’s Publication, India.

    Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, and Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62, 597–635.

    CAS  Google Scholar 

  • Reid ID and Paice MG (1994) Biological bleaching of kraft pulps by whiterot fungi and their enzymes. FEMS Microbiol Rev 13, 369–376.

    Article  CAS  Google Scholar 

  • Robinson T, Chandran B, and Nigam P (2001) Studies on the production of enzymes by white-rot fungi for the decolorization of textile dyes. Enzyme Microbiol Technol 29, 575–579.

    Article  CAS  Google Scholar 

  • Rodríguez E, Pickard MA, and vazquez-Duhalt R (1999) Industrial dye decolorization by laccase from ligninolytic fungi. Curr Microbiol 38, 27–32.

    Article  Google Scholar 

  • Sabotič J, Trček T, Popovič T, and Brzin J (2007) Basidiomycetes harbour a hidden treasure of proteolytic diversity. J Biotechnol 128, 297–308.

    Article  Google Scholar 

  • Shin KS and Lee YJ (2000) Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch Biochem Biophys 384, 109–115.

    Article  CAS  Google Scholar 

  • Šnajdr J and Baldrian P (2007) Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol 52(5), 498–502.

    Article  Google Scholar 

  • Suwannawong LP, Khammuang S, and Sarnthima R (2010) Decolorization of rhodamine B and congo red by partial purified laccase from Lentinus polychrous. J Biochem Tech 3, 182–186.

    Google Scholar 

  • Svrcek M and Coxon D (1975) In A color guide to familiar mushrooms and fungi, Octopus Books Limited, UK.

    Google Scholar 

  • Tanti B, Gurung L, and Sarma GC (2011) Wild edible fungal resources used by ethnic tribes of Nagaland, India. Indian J Tradit Knowle 10, 512–515.

    Google Scholar 

  • Theerachat M, Morel S, Guieysse D, Remaud-Simeon M, and Chulalaksananukul W (2012) Comparison of synthetic dye decolorization by whole cells and a laccase enriched extract from Trametes versicolor DSM11269. Afr J of Biotechnol 11, 1964–1969.

    CAS  Google Scholar 

  • Timur S, Pazarlyóglu N, Pilloton R, and Telefoncu A (2004) Thick film sensors based on laccases from different sources immobilized in polyaniline matrix. Sens Actuators B Chem 97, 132–136.

    Article  CAS  Google Scholar 

  • Ullrich R, Huong LM, Dung NL, and Hofrichter M (2005) Laccase from the medicinal mushroom Agaricus blazei: production, purification and characterization. Appl Microbiol Biotechnol 67, 357–363.

    Article  CAS  Google Scholar 

  • Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B et al. (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol 45, 233–239.

    Article  CAS  Google Scholar 

  • Wang CW (1989) Cellulolytic enzymes of Volvariella volvacea. In Tropical mushrooms: biological nature and cultivation methods, Chang ST and Quimio TH (eds.), pp. 167–186, The Chinese University Press, Hong Kong.

    Google Scholar 

  • Wang HX and Ng TB (2004) Purification of a novel low molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem Biophys Res Commun 315, 450–454.

    Article  CAS  Google Scholar 

  • Wang HX and Ng TB (2006) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69, 521–525.

    Article  CAS  Google Scholar 

  • Wong JH, Ng TB, Jiang Y, Liu F, Chos SW, and Zhang KY (2010) Purification and characterization of a laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Pept Lett 17, 1040–1047.

    Article  CAS  Google Scholar 

  • Zhang GQ, Wang YF, Zhang XQ, Ng TB, and Wang HX (2010) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Proc Biochem 45, 627–633.

    Article  CAS  Google Scholar 

  • Zhang M, Wu F, Wei Z, Xiao Y, and Gong W (2006) Characterization and decolorization ability of a laccase from Panus rudis. Enzyme Microb Tech 39, 92–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaund, P., Joshi, S.R. Enzymatic profiling of wild edible mushrooms consumed by the ethnic tribes of India. J Korean Soc Appl Biol Chem 57, 263–271 (2014). https://doi.org/10.1007/s13765-013-4225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-013-4225-z

Keywords

Navigation