Skip to main content
Log in

Chemical composition and antioxidant properties of cultivated button mushrooms (Agaricus bisporus)

  • Research Report
  • Others
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Mushrooms contain a variety of secondary metabolites, including various phenolic compounds and ergothioneine, which have been shown to act as excellent antioxidants. The present study reports a comparison of the antioxidant properties, total phenolic, ergothioneine and mineral contents of the most-consumed strains of Agaricus bisporus (white or brown colors). The samples were fruiting body, mycelia produced at farm (old mycelium) and in vitro (young mycelium). The antioxidant activity was measured by DPPH, FRAP and ABTS assays. The analysis of phenolic compounds was performed by Folin-Ciocalteau method. The mushroom strain with the highest ergothioneine, phenolic compounds and antioxidant potential was the strain A-SPA15 (brown color). Generally, fruiting body samples revealed higher ergothioneine, phenolic compounds and antioxidant properties than mycelia obtained from farm and in vitro culture. There were variations in the mineral content of A. bisporus harvested from the fruiting body, old mycelium, and young mycelium. Furthermore, the lowest heavy-metal concentrations (Ni, Pb, Cd, and Cr) were detected in mycelium samples in each strain. Results demonstrated that mushrooms contained high amounts of copper, zinc, iron and manganese could be used in well-balanced diets. This study contributes to the data relative to A. bisporus consumed as fresh mushrooms and the possibility of in vitro production as a source of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anne Elise, S.S.C., E.A. Koehnlein, A.A. Soares, G.J. Eler, A.T.A. Nakashima, A. Bracht, and R.M. Peralta. 2012. Bioactives of fruiting bodies and submerged culture mycelia of Agaricus brasiliensis (A. blazei) and their antioxidant properties. LWT — Food Sci. Technol. 46:493–499.

    Article  Google Scholar 

  • Barros, L., P. Baptista, L.M. Estevinho, and I.C.F.R. Ferreira. 2007. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J. Agric. Food Chem. 55:8766–8771.

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I.F.F. and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 239:70–76.

    Article  CAS  PubMed  Google Scholar 

  • Bernas, E., G. Jaworska, and Z. Lisiewska. 2006. Edible mushrooms as a source of valuable nutritive constituents. Acta Sci. Pol. Technol. Aliment. 5:5–20.

    CAS  Google Scholar 

  • Bozin, B., N. Mimica-Dukic, I. Samojlik, and E. Jovin. 2007. Antimicrobial and antioxidant properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 55:7879–7885.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., K. Ho, Y. Hsieh, L. Wang, and J. Mau. 2012. Contents of lovastatin, g-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT — Food Sci. Technol. 47:274–278.

    Article  CAS  Google Scholar 

  • Cheung, L.M., P.C.K. Cheung, and V.E.C. Ooi. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81:249–255.

    Article  CAS  Google Scholar 

  • Dimitrios, B. 2006. Sources of natural phenolics antioxidants. Trends in Food. Sci. Technol. 17:505–512.

    Article  CAS  Google Scholar 

  • Dore, C., T.C.G. Azevedo, M.C.R. De Souza, L.A. Rego, J.C.M. De Dantas, and F.R.F. Silva. 2007. Antiinflammatory, antioxidant and cytotoxic actions of betaglucan-rich extract from Geastrum saecatum mushroom. Int. ImmunoPharmacol. 7:1160–1169.

    Article  Google Scholar 

  • Dubost, N.J., R. Beelman, D. Peterson, and D. Royse. 2007. Identification and quantification of ergothioneine in cultivated mushrooms using liquid chromatography-mass spectroscopy. Int. J. Med. Mushrooms 8:215–222.

    Article  Google Scholar 

  • European Commission. 2003. Opinion of the scientific committee on food on the tolerable upper intake level of copper. Health and Consumer Protection Directorate-General, Brussels, Belgium.

    Google Scholar 

  • Ey, J., E. Schomig, and D. Taubert. 2007. Dietary sources and antioxidant effects of ergothioneine. J. Agric. Food Chem. 55:6466–6474.

    Article  CAS  PubMed  Google Scholar 

  • Faccin, L.C., F. Benati, V.P. Rincao, M.S. Mantovani, S.A. Soares, and M.L. Gonzaga. 2007. Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett. Appl. Microbiol. 45:24–28.

    Article  CAS  PubMed  Google Scholar 

  • Gao, H., T.F. Shupe, T.L. Eberhardt, and C.Y. Hse. 2007. Antioxidant activity of extracts from the wood and bark of Port OrFord cedar. J. Wood Sci. 53:147–152.

    Article  CAS  Google Scholar 

  • Garcia-Lafuente, A., C. Moro, A. Villares, E. Guillamón, M.A. Rostagno, and D.M. Arrigo. 2010. Mushrooms as a source of anti-inflammatory agents. Antiinflamm. Antiallergy. Agents. Med. Chem. 9:125–141.

    Article  CAS  Google Scholar 

  • Genccelep, H, Y. Uzun, Y. Tunçtürk, and K. Demirel: 2009. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 1033–1036.

    Google Scholar 

  • Ghahremani-majd, H., F. Dashti, D. Dastan, H. Mumivand, J. Hadian, and M. Esna-Ashari. 2012. Antioxidant and antimicrobial activities of Iranian mooseer (Allium hirtifolium Boiss) populations. Hort. Environ. Biotechnol. 53:116–122.

    Article  Google Scholar 

  • Hartman, P.E., 1990. Ergothioneine as antioxidant. Methods in Enzymol. 186:310–318.

    Article  CAS  Google Scholar 

  • Kim, M.Y., P. Seguin, J.K. Ahn, J.J. Kim, S.C. Chun, and E.H. Kim. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem. 56:7265–7270.

    Article  CAS  PubMed  Google Scholar 

  • Koyyalamudi, S.R., S. Jeong, S. Manavalan, B. Vysetti, and G. Pang. 2013. Micronutrient mineral content of the fruiting bodies of Australian cultivated Agaricus bisporus white button mushrooms. J. Food Compos. Anal. 31:109–114.

    Article  CAS  Google Scholar 

  • Isiloglu, M., F. Yilmaz, and M. Merdivan. 2001. Concentrations of trace elements in wild edible mushrooms. Food Chem. 73:163–175.

    Article  Google Scholar 

  • Lindequist, U., T.H.J. Niedermeyer, and W.D. Jülich. 2005. The pharmacological potential of mushrooms. Evid.BasedComplement. Alternat. Med. 2:285–299.

    Article  Google Scholar 

  • Mattila, P., K. Könkö, M. Eurola, J.M. Pihlava, J. Astola, L. Vahteristo, V. Hietaniemi, J. Kumpulainen, M. Valtonen, and V. Piironen. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49:2343–2348.

    Article  CAS  PubMed  Google Scholar 

  • Mattila, P., K. Suonpaa, and V. Piironen. 2002. Functional properties of edible mushrooms. Nutrition. 16:694–696.

    Article  Google Scholar 

  • Mau, J.L., H.C. Lin, and S.F. Song. 2002. Antioxidant properties of several specialty mushrooms. Food Res. Int. 35:519–526.

    Article  CAS  Google Scholar 

  • Ozturk, M., M. Duru, S. Kivrak, N. Mercan-Dogan, M.A. Özler, and A. Türkoglu. 2011. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol. 49:1353–1360.

    Article  PubMed  Google Scholar 

  • Paul, B.D. and S.H. Snyder. 2010. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 17:1134–1140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman, I., P.S. Gilmour, L.A. Jimenez, S.K. Biswas, F. Antonicelli, and O.I. Aruoma. 2003. Ergothioneine inhibits oxidative stressand TNF-a-induced NF-jB activation and interleukin-8 release in alveolar epithelial cells. Biochem. Biophys. Res. Commun. 302:860–864.

    Article  CAS  PubMed  Google Scholar 

  • Rajesh, B.D. and G.R. Nageswara. 2013. Antioxidant properties and electrochemical behavior of cultivated commercial Indian edible mushrooms. J. Food Sci. Technol. 50:301–308.

    Article  Google Scholar 

  • Slinkard, K. and V.L. Singleton. 1997. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28:49–55.

    Google Scholar 

  • Yang, J.H., H.C. Lin, and J.L. Mau. 2002. Antioxidant properties of several commercial mushrooms. Food Chem. 77:229–235.

    Article  CAS  Google Scholar 

  • Yen, G.C. and H.Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43:27–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Dashti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahremani-Majd, H., Dashti, F. Chemical composition and antioxidant properties of cultivated button mushrooms (Agaricus bisporus). Hortic. Environ. Biotechnol. 56, 376–382 (2015). https://doi.org/10.1007/s13580-015-0124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0124-z

Additional key words

Navigation