Skip to main content
Log in

Phytomanagement of lead-contaminated soils: critical review of new trends and future prospects

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Lead is a hazardous heavy metal released extensively in the environment through natural and anthropogenic sources and is toxic to terrestrial life. The presence of lead in terrestrial ecosystem raises concerns about human health due to edible safety of the cultivated crops or vegetables, and remediation of such soils is therefore essential. As a green and cost-effective alternative, plants have been used to remediate such soils in a number of ways including phytoextraction, phytostabilization, rhizofiltration, phytotransformation and phytovolatilization. The effectiveness of these plant-based approaches as well as the efficacy of different metal-chelating organic ligands of both synthetic and natural origins for the management of lead-contaminated soils is discussed at length in this review. Furthermore, numerous recent reports are incorporated in tabulated form and areas of potential focus have been highlighted that not only signify the success of such studies in the past but also pave the way for future efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HM:

Heavy metal

Pb:

Lead

Cd:

Cadmium

Cr:

Chromium

Hg:

Mercury

Sb:

Antimony

Ag:

Silver

Ni:

Nickel

As:

Arsenic

Ca:

Calcium

Zn:

Zinc

PbS:

Lead sulfide

PbSO4 :

Lead sulfate

PbSiO3 :

Lead silicate

Pb3O4 :

Lead oxide

PbCO3 :

Lead carbonate

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

EDDS:

Ethylenediamine-N,N′-disuccinic acid

DTPA:

Diethylenetriaminepentaacetic acid

NTA:

Nitrilotriacetic acid

LMWOA:

Low-molecular-weight organic acids

CA:

Citric acid

MA:

Malic acid

TA:

Tartaric acid

OA:

Oxalic acid

FW:

Fresh weight

DW:

Dry weight

References

  • Aderholt M, Vogelien DL, Koether M, Greipsson S (2017) Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere 175:85–96

    Article  CAS  Google Scholar 

  • Agnello AC, Huguenot D, van Hullebusch ED, Esposito G (2015) Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation. Int J Phytoremediat 17:669–677

    Article  CAS  Google Scholar 

  • Alam N, Ahmad SR, Qadir A, Ashraf MI, Lakhan C, Lakhan VC (2015) Use of statistical and GIS techniques to assess and predict concentrations of heavy metals in soils of Lahore city, Pakistan. Environ Monit Assess 187:636

    Article  CAS  Google Scholar 

  • Albert Q, Baraud F, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Garon D (2019) Use of soil fungi in the biosorption of three trace metals (Cd, Cu, Pb): promising candidates for treatment technology? Environ Tech. https://doi.org/10.1080/09593330.2019.1602170

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals - concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Amin N, Ahmad T (2015) Contamination of soil with heavy metals from industrial effluent and their translocation in green vegetables of Peshawar, Pakistan. RSC Adv 5:14322–14329

    Article  CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Saminathan SKM, Mullens CP, Bach SBH (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183

    Article  CAS  Google Scholar 

  • Arreghini S, de Cabo L, Serafini R, de Iorio AF (2017) Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus. Environ Sci Pollut Res 24:8098–8107

    Article  CAS  Google Scholar 

  • Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X (2017) Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci 8:259

    Article  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Batool F, Iqbal S, Chan KW, Tariq MI, Shah A, Mustaqeem M (2015) Concentrations of heavy metals in hair and nails of young Pakistanis: correlation with dietary elements. Environ Forensics 16:1–6

    Article  CAS  Google Scholar 

  • Bech J, Roca N, Tume P, Ramos-Miras J, Gil C, Boluda R (2016) Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. CATENA 136:66–73

    Article  CAS  Google Scholar 

  • Behera KK (2014) Phytoremediation, transgenic plants and microbes. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Cham, pp 65–85

    Chapter  Google Scholar 

  • Beiyuan J, Tsang DC, Valix M, Baek K, Ok YS, Zhang W, Bolan NS, Rinklebe J, Li XD (2018) Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes. Chemosphere 205:178–187

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553

    Article  CAS  Google Scholar 

  • Brown GA, Elliott HA (1992) Influence of electrolytes on EDTA extraction of Pb from polluted soil. Water Air Soil Pollut 62:157–165

    Article  CAS  Google Scholar 

  • Cameselle C, Gouveia S (2019) Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater 361:95–102

    Article  CAS  Google Scholar 

  • Cay S, Uyanik A, Engin MS, Kutbay HG (2015) Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. Int J Phytoremediat 17(6):568–574

    Article  CAS  Google Scholar 

  • Chen TC, Hong A (1995) Chelating extraction of lead and copper from an authentic contaminated soil using N-(2-acetamido) iminodiacetic acid and S-carboxymethyl-l-cysteine. J Hazard Mater 41(2–3):147–160

    Article  CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  Google Scholar 

  • Cocârţă DM, Neamţu AM (2016) Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int J Environ Sci Technol 13:2025–2036

    Article  CAS  Google Scholar 

  • Costa GB, de Felix MRL, Simioni C, Ramlov F, Oliveira ER, Pereira DT, Maraschin M, Chow F, Horta PA, Lalau CM, da Costa CH, Matias WG, Bouzon ZL, Schmidt ÉC (2016) Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma 253:111–125

    Article  CAS  Google Scholar 

  • Cui S, Zhou Q, Wei S, Zhang W, Cao L, Ren L (2007) Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. J Hazard Mater 146:341–346

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water, pp 365–369

  • d’Aquino L, Staiano M, Gambale E, Basile A, Tommasi F (2016) Uptake and distribution of several inorganic ions in Nephrolepis cordifolia (L.) C. Presl grown on contaminated soil. Plant Biosyst 152(1):59–69

    Article  Google Scholar 

  • Dezhban A, Shirvany A, Attarod P, Delshad M, Matinizadeh M, Khoshnevis M (2015) Cadmium and lead effects on chlorophyll fluorescence, chlorophyll pigments and proline of Robinia pseudoacacia. J For Res 26:323–329

    Article  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Ebrahimi M (2013) The Effect of EDTA Addition on the phytoremediation efficiency of Pb and Cr by Echinochloa crus galii (L.) beave and associated potential leaching risk. Soil Sediment Contam 23:245–256

    Article  CAS  Google Scholar 

  • Fabbricino M, Ferraro A, Luongo V, Pontoni L, Race M (2018) Soil washing optimization, recycling of the solution, and ecotoxicity assessment for the remediation of Pb-contaminated sites using EDDS. Sustainability 10(3):636

    Article  CAS  Google Scholar 

  • Farooq MA, Ali B, Gill RA, Islam F, Cui P, Zhou W (2016) Breeding oil crops for sustainable production: heavy metal tolerance. In: Breeding oilseed crops for sustainable production, pp 19–31

  • Fischer S, Kühnlenz T, Thieme M, Schmidt H, Clemens S (2014) Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48:7552–7559

    Article  CAS  Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92:213–217

    Article  CAS  Google Scholar 

  • Freitas EV, Nascimento CW, Silva WM (2014) Citric acid-assisted phytoextraction of lead in the field: the use of soil amendments. Water Air Soil Pollut 225:1796

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6114–6120

    Article  CAS  Google Scholar 

  • GOC (2003) Site remediation technologies: a reference manual. Contaminated sites working group, Ontario, Chapter 6

  • Hakeem KR, Sabir M, Öztürk M, Mermut AR, Hasanuzzaman M, Nahar K, Fujita M (2015) Soil remediation and plants. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-799937-1.00016-4

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  Google Scholar 

  • Harguinteguy CA, Pignata ML, Fernández-Cirelli A (2015) Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng 82:512–516

    Article  Google Scholar 

  • Hashimoto Y, Takaoka M, Shiota K (2011) Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an X-ray Absorption fine structure spectroscopy investigation. J Environ Qual 40(3):696–703

    Article  CAS  Google Scholar 

  • Horsfall M Jr, Ogban FE, Akporhonor EE (2006) Recovery of lead and cadmium ions from metal-loaded biomass of wild cocoyam (Caladium bicolor) using acidic, basic and neutral eluent solutions. Electron J Biotechnol 9:152–156

    Article  CAS  Google Scholar 

  • Hu Z, Xie Y, Jin G, Fu J, Li H (2015) Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology 24:563–572

    Article  CAS  Google Scholar 

  • Yuan F, Song LZ, Huang B, YF F, Lu FY, Su F (2015) Health risk of heavy metals to the general inhabitants in Guilin, China via consumption of vegetables. In: 2015 AASRI international conference on industrial electronics and applications, pp 445–447

  • Huang H, Gupta DK, Tian S, Yang X, Li T (2012) Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environ Sci Pollut Res 19:1640–1651

    Article  CAS  Google Scholar 

  • Huang MY, Duan RY, Ji X (2014) Chronic effects of environmentally-relevant concentrations of lead in Pelophylax nigromaculata tadpoles: threshold dose and adverse effects. Ecotoxicol Environ Saf 104:310–316

    Article  CAS  Google Scholar 

  • Hughes DL, Afsar A, Laventine DM, Shaw EJ, Harwood LM, Hodson ME (2018) Metal removal from soil leachates using DTPA-functionalised maghemite nanoparticles, a potential soil washing technology. Chemosphere 209:480–488

    Article  CAS  Google Scholar 

  • Islam MS, Hoque MF (2014) Concentrations of heavy metals in vegetables around the industrial area of Dhaka city, Bangladesh and health risk assessment. Int Food Res J 21:2121–2126

    Google Scholar 

  • Ismail A, Riaz M, Akhtar S, Ismail T, Amir M, Zafar-ul-Hye M (2014) Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters. Food Addit Contam Part B Surveill 7:213–219

    Article  CAS  Google Scholar 

  • Ismail A, Riaz M, Akhtar S, Ismail T, Ahmad Z, Hashmi MS (2015) Estimated daily intake and health risk of heavy metals by consumption of milk. Food Addit Contam Part B Surveill 8:260–265

    CAS  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40

    Article  CAS  Google Scholar 

  • Johnson DM, Deocampo DM, El-Mayas H, Greipsson S (2015) Induced phytoextraction of lead through chemical manipulation of switchgrass and corn; Role of iron supplement. Int J Phytoremediat 17:1192–1203

    Article  CAS  Google Scholar 

  • Johnston T, Datta R, Sarkar D (2005) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. Water Encyclopedia 5:365–369

    Google Scholar 

  • Kart A, Koc E, Dalginli KY, Gulmez C, Sertcelik M, Atakisi O (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol Trace Elem Res 174(2):387–391

    Article  CAS  Google Scholar 

  • Kaur L, Gadgil K, Sharma S (2015) Assessment of phytoextraction potential of fenugreek (Trigonella foenum graecum L.) to remove heavy metals (Pb and Ni) from contaminated soil. J Chem Heal Risks 5(1):1–14

    Google Scholar 

  • Khan MU, Malik RN, Muhammad S, Ullah F, Qadir A (2014) Health risk assessment of consumption of heavy metals in market food crops from Sialkot and Gujranwala Districts, Pakistan. Hum Ecol Risk Assess 21:327–337

    Article  CAS  Google Scholar 

  • Khan MU, Shahbaz N, Waheed S, Mahmood A, Shinwari ZK, Malik RN (2015) Comparative health risk surveillance of heavy metals via dietary foodstuff consumption in different land-use types of Pakistan. Hum Ecol Risk Assess 22(1):168–186

    Article  CAS  Google Scholar 

  • Khan I, Iqbal M, Ashraf MY, Ashraf MA, Ali S (2016) Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.). J Hazard Mater 317:352–361

    Article  CAS  Google Scholar 

  • Kim H, Lee TG (2017) A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). Chemosphere 178:479–485

    Article  CAS  Google Scholar 

  • Kord B, Mataji A, Babaie S (2010) Pine (Pinus eldarica Medw.) needles as indicator for heavy metals pollution. Int J Environ Sci Technol 7(1):79–84

    Article  CAS  Google Scholar 

  • Kumar A, Prasad MNV (2015) Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 53:66–71

    Article  CAS  Google Scholar 

  • Kumawat SR, Yadav BL, Majumdar SP (2014) Effect of municipal sewage on build up of heavy metals in vegetables in the vicinity of Jaipur city of eastern Rajasthan. Environ Ecol 32:1673–1676

    Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer, New York

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Legocka J, Sobieszczuk-Nowicka E, Wojtyla Ł, Samardakiewicz S (2015) Lead-stress induced changes in the content of free, thylakoid- and chromatin-bound polyamines, photosynthetic parameters and ultrastructure in greening barley leaves. J Plant Physiol 186–187:15–24

    Article  CAS  Google Scholar 

  • Li X, Zhang L (2015) Endophytic infection alleviates Pb(2+) stress effects on photosystem II functioning of Oryza sativa leaves. J Hazard Mater 295:79–85

    Article  CAS  Google Scholar 

  • Li N, Kang Y, Pan W, Zeng L, Zhang Q, Luo J (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste incinerator site, South China. Sci Total Environ 521–522:144–151

    Article  CAS  Google Scholar 

  • Li Q, Zhan J, Chen B, Meng X, Pan X (2016a) Removal of Pb, Zn, Cu, and Cd by two types of Eichhornia crassipes. Environ Eng Sci 33:88–97

    Article  CAS  Google Scholar 

  • Li X, Cen H, Chen Y, Xu S, Peng L, Zhu H, Li Y (2016b) Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides. Int J Phytoremediat 18:251–260

    Article  CAS  Google Scholar 

  • Li J, Hashimoto Y, Riya S, Terada A, Hou H, Shibagaki Y, Hosomi M (2019) Removal and immobilization of heavy metals in contaminated soils by chlorination and thermal treatment on an industrial-scale. Chem Eng J 359:385–392

    Article  CAS  Google Scholar 

  • Liu D, Zou J, Meng Q, Zou J, Jiang W (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143

    Article  CAS  Google Scholar 

  • López-Orenes A, Martínez-Pérez A, Calderón AA, Ferrer MA (2014) Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiol Biochem 84:57–66

    Article  CAS  Google Scholar 

  • Luo J, Cai L, Qi S, Wu J, Gu XS (2017) A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. J Environ Manage 204:17–22

    Article  CAS  Google Scholar 

  • Malar S, Manikandan R, Favas PJC, Vikram Sahi S, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257

    Article  CAS  Google Scholar 

  • Materac M, Wyrwicka A, Sobiecka E (2015) Phytoremediation techniques of wastewater treatment. Environ Biotech 11(1):11–15

    Article  Google Scholar 

  • Maturi K, Reddy KR (2008) Extractants for the removal of mixed contaminants from soils. Soil Sediment Contam 17(6):586–608

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102(1):3–13

    Article  CAS  Google Scholar 

  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediat 11:558–574

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Nouri H, Chavoshi Borujeni S, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ Prot 107:94–107

    Article  CAS  Google Scholar 

  • Pan W, Kang Y, Li N, Zeng L, Zhang Q, Wu J, Lu P, Luo J, Guo X (2015) Bioaccessibility of heavy metals in vegetables and its association with the physicochemical characteristics. Environ Sci Pollut Res Int 23(6):5335–5341

    Article  CAS  Google Scholar 

  • Pedron F, Rosellini I, Petruzzelli G, Barbafieri M (2014) Chelant comparison for assisted phytoextraction of lead in two contaminated soils. Resour Environ 4(5):209–214

    Google Scholar 

  • Perry VR, Krogstad EJ, El-Mayas H, Greipsson S (2012) Chemically enhanced phytoextraction of lead contaminated soils. Int J Phytoremediat 14:703–713

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Talarek M, Bralska M, Zambrzycka E (2015) The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ Sci Pollut Res 22(23):19112–19123

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Qiao X, Zheng Z, Zhang L, Wang J, Shi G, Xu X (2015) Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: subcellular distribution, polyamines and proline. Chemosphere 120:179–187

    Article  CAS  Google Scholar 

  • Raja S, Cheema HMN, Babar S, Khan AA, Murtaza G, Aslam U (2015) Socio-economic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables. Agric Water Manag 158:26–34

    Article  Google Scholar 

  • Raza SH, Shafiq F, Rashid U, Ibrahim M, Adrees M (2015) Remediation of Cd-contaminated soils: perspectives and advancements. In: Hakeem KR, Sabir M, Öztürk M, Mermut AR (eds) Soil remediation and plants. Elsevier, Amsterdam, pp 571–597

    Chapter  Google Scholar 

  • Reed BE, Carriere PC, Moore R (1996) Flushing of a Pb(II) contaminated soil using HCl, EDTA, and CaCl2. J Environ Eng 122(1):48–50

    Article  CAS  Google Scholar 

  • Reimann C, Caritat PD (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34:5084–5091

    Article  CAS  Google Scholar 

  • Rengel Z, Graham RD (1996) Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J Exp Bot 47:217–226

    Article  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Rodríguez-Seijo A, Lago-Vila M, Andrade ML, Vega FA (2016) Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environ Sci Pollut Res 23:1312–1323

    Article  CAS  Google Scholar 

  • RoyChowdhury A, Datta R, Sarkar D (2018) Chapter 310—heavy metal pollution and remediation. In: Török B, Dransfield T (eds) Green chemistry: an inclusive approach. Elsevier, Amsterdam, pp 359–373. https://doi.org/10.1016/b978-0-12-809270-5.00015-7

    Chapter  Google Scholar 

  • RoyChowdhury A, Sarkar D, Datta R (2019) A combined chemical and phytoremediation method for reclamation of acid mine drainage–impacted soils. Environ Sci Pollut Res 26(14):14414–14425

    Article  CAS  Google Scholar 

  • Rui D, Wu Z, Ji M, Liu J, Wang S, Ito Y (2019) Remediation of Cd- and Pb-contaminated clay soils through combined freeze-thaw and soil washing. J Hazard Mater 369:87–95

    Article  CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    Article  CAS  Google Scholar 

  • Santos RW, Schmidt ÉC, Vieira IC, Costa GB, Rover T, Simioni C, Barufi JB, Soares CHL, Bouzon ZL (2015) The effect of different concentrations of copper and lead on the morphology and physiology of Hypnea musciformis cultivated in vitro: a comparative analysis. Protoplasma 252:1203–1215

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Segura A, Ramos JL (2013) Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473

    Article  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  CAS  Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high biomass plant species. J Environ Qual 31(6):1893–1900

    Article  CAS  Google Scholar 

  • Shen Z, Zhang J, Hou D, Tsang DC, Ok YS, Alessi DS (2019) Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ Int 122:357–362

    Article  CAS  Google Scholar 

  • Shu X, Yin L, Zhang Q, Wang W (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19:893–902

    Article  CAS  Google Scholar 

  • Sylvain B, Mikael MH, Florie M, Emmanuel J, Marilyne S, Sylvain B, Domenico M (2016) Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. CATENA 136:44–52

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2000) Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: state of the practice. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  CAS  Google Scholar 

  • Wang L, Yang H, Liu R, Fan G (2015) Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis. Environ Sci Pollut Res 22:12747–12758

    Article  CAS  Google Scholar 

  • Wioleta W, Anna D, Ilona B, Kamila K, Elżbieta R (2015) Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants. Biometals 28:151–162

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Zeng Q, Sauve S, Allen HE, Hendershot WH (2005) Recycling EDTA solutions used to remediate metal-polluted soils. Environ Pollut 133:225–231

    Article  CAS  Google Scholar 

  • Zhao SL, Shang XJ, Duo LA (2013) Effects of ethylenediaminetetraacetic acid and ammonium sulfate on Pb and Cr distribution in Kochia scoparia from compost. Int J Environ Sci Technol 12:563–570

    Article  CAS  Google Scholar 

  • Zhao L, Li T, Zhang X, Chen G, Zheng Z, Yu H (2016) Pb uptake and phytostabilization potential of the mining ecotype of Athyrium wardii (Hook.) grown in Pb-contaminated soil. CLEAN Soil Air Water 44:1184–1190

    Article  CAS  Google Scholar 

  • Zhou DM, Hao XZ, Xue Y et al (2004) Advances in remediation technologies of contaminated soils. Ecol Environ Sci 13(2):234–242

    Google Scholar 

  • Zhou WH, Liu F, Yi S, Chen YZ, Geng X, Zheng C (2019) Simultaneous stabilization of Pb and improvement of soil strength using nZVI. Sci Total Environ 651:877–884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Shafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Editorial responsibility: Abhishek RoyChowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Iqbal, M. & Shafiq, F. Phytomanagement of lead-contaminated soils: critical review of new trends and future prospects. Int. J. Environ. Sci. Technol. 16, 6473–6488 (2019). https://doi.org/10.1007/s13762-019-02431-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02431-2

Keywords

Navigation