Skip to main content
Log in

Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The effects of different concentrations of Pb on growth of Allium sativum L, Pb uptake and accumulation, antioxidant enzyme activity and malondialdehyde content were investigated. The results indicated that shoot growth at high concentration of Pb (10−3 M) and roots growth at 10−3 M and 10−4 M Pb were significantly inhibited. Lead ions were accumulated mainly in the roots and only small amounts were translocated to bulbs and shoots. SOD activities in shoot and roots exposed to 10−3 M Pb were observed to be high. Plants exposed to 10−3 M Pb showed a significant increase in POD activity in roots versus the control and other Pb treatments. In roots, CAT activity and MDA concentration at 10−3 M Pb is high significantly. The mechanisms of Pb toxicity and tolerance in garlic are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAT:

Catalase

MDA:

Malondialdehyde

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Agawal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant 48:555–560. doi:10.1023/B:BIOP.0000047152.07878.e7

    Article  Google Scholar 

  • Alavarez ME, Lamb C (1997) Oxidative burst mediated defense responses in plant disease resistance. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 815–839

    Google Scholar 

  • Antosiewicz DM (1992) Adaptation of plants to an environment polluted with heavy metals. Acta Soc Bot Pol 61:281–299

    CAS  Google Scholar 

  • Antosiewicz D, Wierzbicka M (1999) Localization of lead in Allium cepa L. cells by electron microscopy. J Microsc 195:139–146. doi:10.1046/j.1365-2818.1999.00492.x

    Article  CAS  Google Scholar 

  • Arvik JH, Zimdahl RL (1974) The influence of temperature pH and metabolic inhibitors on uptake of lead by plant roots. J Environ Qual 3:374–376

    Article  CAS  Google Scholar 

  • Baker AJM (1995) Metal hyperaccumulation by plants: our present knowledge of the ecophysiological phenomenon. 14th annual symposium current topics in plant biochemistry, physiology and molecular biology, Columbia, MO, pp 7–8

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press Inc., Boca Raton, FL, USA, pp 85–107

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. doi:10.1016/S0076-6879(78)52032-6

    Article  CAS  Google Scholar 

  • Cakmak KB, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in rot tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium Nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90. doi:10.1007/s11270-005-8682-9

    Article  CAS  Google Scholar 

  • Dawes IW (2000) Response of eukaryotic cells to oxidative stress. Agric Biol Chem 43:211–217

    CAS  Google Scholar 

  • Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediator of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants, from molecules to ecosystem. Springer-Verlag, Berlin, pp 73–97

    Google Scholar 

  • Ding HD, Wan YH, Qi NM, Zhu WM, Yang XF, Shao YC (2004) Effects of Cd2+ and Zn2+ stress on antioxidant enzyme system of tomato seedlings. Acta Agr Shanghai 20:79–82 in Chinese

    Google Scholar 

  • Dou ZX (1988) Lead pollution in soil and its effect on plants. Agro-Environ Protect 7(3):38–39 in Chinese

    Google Scholar 

  • Duan XC (2003) The study on the trace elements in the free growing vine of harvested tuber dioscoreas. J Guangxi Norm Univ 21:122–123 in Chinese

    Google Scholar 

  • EL-shintinawy F, Ebrahim MKH, Sewelam N, Lshourbagy MN (2004) Activity of photosystem 2, lipid peroxidation, and the enzymatic antioxidant protective system in heat shocked barley seedlings. Photosynthetica 42:15–21. doi:10.1023/B:PHOT.0000040564.79874.42

    Article  CAS  Google Scholar 

  • Fargasova A (1994) Effect of Pb, Cd, Hg, As and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52:452–456. doi:10.1007/BF00197836

    Article  CAS  Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273. doi:10.1016/j.scitotenv.2004.12.004

    Article  CAS  Google Scholar 

  • Gabara B, Wojtyła-Kuchta B, Tarczynska BM (1992) The effect of calcium on DNA synthesis in pea (Pisus sativus L.) roots after treatment with heavy metals. Folia Histochem Cytobiol 30:69–73

    CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhou MX (2004) Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil 258:241–248. doi:10.1023/B:PLSO.0000016554.87519.d6

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  Google Scholar 

  • Hampp R, Ziegler H, Ziegler I (1973) Influence of lead ions on the activity of enzymes of the reductive pentose phosphate pathway. Biochem Physiol Pflanz 164:588–595

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84. doi:10.1111/j.1469-8137.1996.tb01147.x

    Article  CAS  Google Scholar 

  • Jiang WS, Liu DH (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of Allium sativum L. Bioresour Technol 76:9–13. doi:10.1016/S0960-8524(00)00086-9

    Article  CAS  Google Scholar 

  • Johnson WR, Proctor JA (1977) Comparative study of metal levels in plants from two contrasting lead mine sites. Plant Soil 46:251–257. doi:10.1007/BF00693131

    Article  Google Scholar 

  • Kumar NPBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238. doi:10.1021/es00005a014

    Article  CAS  Google Scholar 

  • Leopold I, Gunther D (1997) Investigation of binding properties of heavy-metal–peptide complexes in plant cell cultures using HPLC-ICP-MS. J Anal Chem 359:364–370. doi:10.1007/s002160050588

    Article  CAS  Google Scholar 

  • Levan A (1945) Cytological reaction induced by inorganic salt solutions. Nature 156:751. doi:10.1038/156751a0

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155. doi:10.1023/A:1006345126589

    Article  CAS  Google Scholar 

  • Liu DH, Jiang WS, Wang W, Zhao FM, Lu C (1994) Effects of lead on root growth cell division and nucleolus of Allium cepa. Environ Pollut 86:1–4. doi:10.1016/0269-7491(94)90002-7

    Article  CAS  Google Scholar 

  • Liu DH, Jiang WS, Liu CJ, Xin CH, Hou WQ (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277. doi:10.1016/S0960-8524(99)00082-6

    Article  CAS  Google Scholar 

  • Liu DY, Wang YB, Zhang XX, Si Q (2002) Effect of sewage irrigation on wheat growth and its activated oxygen metabolism. J Appl Ecol 13:1319–1322 in Chinese

    Google Scholar 

  • MacRae EA, Ferguson IB (1985) Changes in catalase activity and H2O2 concentration in plants in response to low temperature. Physiol Plant 65:51–56. doi:10.1111/j.1399-3054.1985.tb02358.x

    Article  CAS  Google Scholar 

  • Meng QM, Zou J, Zou JH, Jiang WS, Liu DH (2007) Effect of Cu2+concentration on growth, antioxidant enzyme activity and malondialdehyde concent in garlic (Allium sativum L.). Acta Biol Cracov Bot 49(1):95–101

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566. doi:10.1080/0735-260291044359

    Article  CAS  Google Scholar 

  • Poskuta JW, Waclawczyk-Lach E (1995) In vivo responses of primary photochemistry of Photosystem II and CO2 exchange in light and in darkness of tall fescue genotypes to lead toxicity. Acta Physiol Plant 17:233–240

    CAS  Google Scholar 

  • Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plant 51:121–128. doi:10.1007/s10535-007-0024-x

    Article  CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi:10.1016/S0098-8472(00)00059-9

    Article  CAS  Google Scholar 

  • Rasheed P, Mukerji S (1991) Changes in catalase and ascorbic acid oxidase activities in response to lead nitrate treatments in mungbean. Indian J Plant Physiol 34:143–146

    Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104. doi:10.1016/j.chemosphere.2004.11.092

    Article  CAS  Google Scholar 

  • Rucińska-Sobkowiak R, Pukacki PM (2006) Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol Plant 28:357–364. doi:10.1007/s11738-006-0032-z

    Article  Google Scholar 

  • Scadalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 343–460

    Google Scholar 

  • Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AT (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, Boca Raton, FL, pp 75–92

    Google Scholar 

  • Seregin IV, Ivanov VB (1998) The transport of cadmium and lead ions trough root tissues. Russ J Plant Physiol 45:780–785

    CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. doi:10.1016/S0168-9452(01)00517-9

    Article  CAS  Google Scholar 

  • Slooten L, Carpiau K, Van Camp W, Van Montagu M, Sybesma C, Jnze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107:737–750

    CAS  Google Scholar 

  • Stephan UW, Pochazka Z (1989) Physiological disorders of the nicotianamine-auxotroph tomato mutant chloronerva at different levels of iron nutrition. I. Growth characteristics and physiological abnormalities as related to iron and nicotianamine supply. Acta Bot Neerl 38:147–153

    CAS  Google Scholar 

  • Stroinski A, Kozlowska M (1997) Cadmium induced oxidative stress in potato tuber. Acta Soc Bot Pol 66:189–195

    CAS  Google Scholar 

  • Tomaszewska B, Tukendorf A, Baralkiewicz D (1996) The synthesis of phytochelatins in lupin roots treated with lead ions. Sci Legumes 3:206–217

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metal on enzyme activity in plant. Plant Cell Environ 13:195–206. doi:10.1111/j.1365-3040.1990.tb01304.x

    Article  Google Scholar 

  • Watanabe MA (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512. doi:10.1111/j.1399-3054.1996.tb00465.x

    Article  CAS  Google Scholar 

  • Wierzbicka M (1987) Lead translocation and localization in Allium cepa roots. Can J Bot 65:1851–1860

    CAS  Google Scholar 

  • Wierzbicka M (1994) Resumption of mitotic activity in Allium cepa L root tips during treatment with lead salts. Environ Exp Bot 34:173–180. doi:10.1016/0098-8472(94)90036-1

    Article  CAS  Google Scholar 

  • Wierzbicka M (1995) How lead loses its toxicity to plants. Acta Soc Bot Pol 64:81–90

    Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The effect of lead on seed inhibition and germination in different plant species. Plant Sci 137:155–171. doi:10.1016/S0168-9452(98)00138-1

    Article  CAS  Google Scholar 

  • Xu P, Zou J, Meng QM, Zou JH, Jiang WS, Liu DH (2008) Effects of Cd2+ on seedling growth of garlic (Allium sativum L.) and selected physiological and biochemical characters. Bioresour Technol 99:6372–6378. doi:10.1016/j.biortech.2007.11.073

    Article  CAS  Google Scholar 

  • Zhang ZL, Zhai WQ (2003) The experimental guide for plant physiology, 3rd edn. Higher Education Press, Beijing, China, pp 123–468 274

    Google Scholar 

  • Zhang LH, Li PJ, Li XM, Meng XL, Xu CB (2005a) Effects of cadmium stress on the growth and physiological characteristics of wheat seedlings. Chin J Ecol 24:458–460 in Chinese

    Google Scholar 

  • Zhang HY, Jiang YN, He ZY, Ma M (2005b) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984. doi:10.1016/j.jplph.2004.12.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China. We thank the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Zou, J., Meng, Q. et al. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18, 134–143 (2009). https://doi.org/10.1007/s10646-008-0266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0266-1

Keywords

Navigation