Skip to main content
Log in

Functionalization of carboxymethyl chitosan with chlorogenic acid: preparation, characterization, and antioxidant capacity

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Carboxymethyl chitosan (CMCS) is a water soluble derivate of chitosan, the unique natural cationic polysaccharide with versatile functions. However, the weak chain-breaking antioxidant capacity is still a shortage of CMCS in practical applications. To enhance the antioxidant capacity, CMCS was functionalized with chlorogenic acid (CA), a natural antioxidant compound, by a free radical grafting method in this study. The successful formation of CA-grafted CMCS (CA-CMCS) was confirmed by UV–Vis, FTIR, and 1H NMR analyses, and CA-CMCS had a grafting ratio of 58.6 ± 1.5 mg CAE/g and a water-solubility of 21.0 ± 1.1 mg/mL. Due to CA presence, CA-CMCS showed different physicochemical and biological properties compared with CMCS. The crystallinity and thermal stability of CA-CMCS were lower than those of CMCS. More importantly, the DPPH and ABTS radical scavenging activities of CA-CMCS reached 92.4% and 99.4%, respectively, being much higher than those of CMCS. Also, better hydroxyl and superoxide radical scavenging activities as well as reducing power were obtained for CA-CMCS relative to CMCS. In addition, CA-CMCS revealed good stability, with its higher percentage in phenolic content and DPPH radical scavenging activity compared to CA. Our results suggest that CA-CMCS could be a promising antioxidant used in the fields of food and health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  3. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  CAS  Google Scholar 

  4. Anraku M, Fujii T, Kondo Y, Kojima E, Hata T, Tabuchi N, Tsuchiya D, Goromaru T, Tsutsumi H, Kadowaki D, Maruyama T, Otagiri M, Tomida H (2011) Antioxidant properties of high molecular weight dietary chitosan in vitro and in vivo. Carbohyd Polym 83:501–505

    Article  CAS  Google Scholar 

  5. Yu J, Lu Q, Zheng J, Li Y (2019) Chitosan/attapulgite/poly(acrylic acid) hydrogel prepared by glow-discharge electrolysis plasma as a reusable adsorbent for selective removal of Pb2+ ions. Iran Polym J 28:881–893

    Article  CAS  Google Scholar 

  6. Bhullar NK, Kumari K, Sud D (2019) Semi-interpenetrating networks of biopolymer chitosan/acrylic acid and thiourea hydrogels: synthesis, characterization and their potential for removal of cadmium. Iran Polym J 28:225–236

    Article  CAS  Google Scholar 

  7. Bukzem AL, Signini R, Dos Santos DM, Liao LM, Ascheri DP (2016) Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int J Biol Macromol 85:615–624

    Article  CAS  Google Scholar 

  8. Liu J, Lu JF, Kan J, Tang YQ, Jin CH (2013) Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. Int J Biol Macromol 62:85–93

    Article  CAS  Google Scholar 

  9. El Gharras H (2009) Polyphenols: food sources, properties and applications—a review. Int J Food Sci Technol 44:2512–2518

    Article  Google Scholar 

  10. Yu SH, Hsieh HY, Pang JC, Tang DW, Shih CM, Tsai ML, Tsai YC, Mi FL (2013) Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloid 32:9–19

    Article  CAS  Google Scholar 

  11. Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D, Spizzirri UG, Puoci F, Picci N (2016) Polyphenol conjugates and human health: a perspective review. Crit Rev Food Sci Nutr 56:326–337

    Article  CAS  Google Scholar 

  12. Liu J, Pu H, Liu S, Kan J, Jin C (2017) Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: a review. Carbohydr Polym 174:999–1017

    Article  CAS  Google Scholar 

  13. Hu Q, Luo Y (2016) Polyphenol-chitosan conjugates: synthesis, characterization, and applications. Carbohydr Polym 151:624–639

    Article  CAS  Google Scholar 

  14. Bai R, Yong H, Zhang X, Liu J, Liu J (2020) Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage. Int J Biol Macromol 143:49–59

    Article  CAS  Google Scholar 

  15. Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J (2014) Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 35:7654–7665

    Article  CAS  Google Scholar 

  16. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Xia F, Modarresi-Ghazani F, Li W, Zhou X (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74

    Article  CAS  Google Scholar 

  17. Rui L, Xie M, Hu B, Zhou L, Saeeduddin M, Zeng X (2017) Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr Polym 170:206–216

    Article  CAS  Google Scholar 

  18. Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F (2016) Enzymatic modification of chitosan by cinnamic acids: antibacterial activity against Ralstonia solanacearum. Int J Biol Macromol 87:577–585

    Article  CAS  Google Scholar 

  19. Hu Q, Wang T, Zhou M, Xue J, Luo Y (2016) In vitro antioxidant-activity evaluation of gallic-acid-grafted chitosan conjugate synthesized by free-radical-induced grafting method. J Agric Food Chem 64:5893–5900

    Article  CAS  Google Scholar 

  20. Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G, Spizzirri UG, Picci N (2009) Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J Agric Food Chem 57:5933–5938

    Article  CAS  Google Scholar 

  21. Chatterjee NS, Panda SK, Navitha M, Asha KK, Anandan R, Mathew S (2015) Vanillic acid and coumaric acid grafted chitosan derivatives: improved grafting ratio and potential application in functional food. J Food Sci Technol 52:7153–7162

    Article  CAS  Google Scholar 

  22. Lee DS, Je JY (2013) Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J Agric Food Chem 61:6574–6579

    Article  CAS  Google Scholar 

  23. Jing Y, Diao Y, Yu X (2019) Free radical-mediated conjugation of chitosan with tannic acid: characterization and antioxidant capacity. React Funct Polym 135:16–22

    Article  CAS  Google Scholar 

  24. Lee DS, Woo JY, Ahn CB, Je JY (2014) Chitosan-hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity. Food Chem 148:97–104

    Article  CAS  Google Scholar 

  25. Liu J, Pu H, Chen C, Liu Y, Bai R, Kan J, Jin C (2018) Reaction mechanisms and structural and physicochemical properties of caffeic acid grafted chitosan synthesized in ascorbic acid and hydroxyl peroxide redox system. J Agric Food Chem 66:279–289

    Article  Google Scholar 

  26. Xie M, Hu B, Wang Y, Zeng X (2014) Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem 62:9128–9136

    Article  CAS  Google Scholar 

  27. Wei Z, Gao Y (2016) Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes. Int J Biol Macromol 86:376–382

    Article  CAS  Google Scholar 

  28. Moaddab M, Nourmohammadi J, Rezayan AH (2018) Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. Eur Polym J 103:40–50

    Article  CAS  Google Scholar 

  29. Medeiros Borsagli FGL, Mansur AAP, Chagas P, Oliveira LCA, Mansur HS (2015) O-carboxymethyl functionalization of chitosan: complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions. React Funct Polym 97:37–47

    Article  CAS  Google Scholar 

  30. Berregi I, Santos JI, Campo Gd, Miranda JI, Aizpurua JM (2003) Quantitation determination of chlorogenic acid in cider apple juices by 1H NMR spectrometry. Anal Chim Acta 486:269–274

    Article  CAS  Google Scholar 

  31. Shao P, Zhang J, Fang Z, Sun P (2014) Complexing of chlorogenic acid with β-cyclodextrins: inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocolloid 41:132–139

    Article  CAS  Google Scholar 

  32. Pasanphan W, Chirachanchai S (2008) Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant. Carbohydr Polym 72:169–177

    Article  CAS  Google Scholar 

  33. Aelenei N, Popa MI, Novac O, Lisa G, Balaita L (2009) Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci Mater Med 20:1095–1102

    Article  CAS  Google Scholar 

  34. Woranuch S, Yoksan R (2013) Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydr Polym 96:495–502

    Article  CAS  Google Scholar 

  35. Božič M, Štrancar J, Kokol V (2013) Laccase-initiated reaction between phenolic acids and chitosan. React Funct Polym 73:1377–1383

    Article  Google Scholar 

  36. Cirillo G, Curcio M, Spizzirri UG, Vittorio O, Valli E, Farfalla A, Leggio A, Nicoletta FP, Iemma F (2019) Chitosan-quercetin bioconjugate as multi-functional component of antioxidants and dual-responsive hydrogel networks. Macromol Mater Eng 304:1800728

    Article  Google Scholar 

  37. Eom TK, Senevirathne M, Kim SK (2012) Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ Toxicol Pharmacol 34:519–527

    Article  CAS  Google Scholar 

  38. Siddaraju MN, Dharmesh SM (2007) Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol Nutr Food Res 51:324–332

    Article  CAS  Google Scholar 

  39. Wang J, Li H, Chen Z, Liu W, Chen H (2016) Characterization and storage properties of a new microencapsulation of tea polyphenols. Ind Crop Prod 89:152–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (No. B2016202111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqing Yu or Yingjun Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yu, X., Diao, Y. et al. Functionalization of carboxymethyl chitosan with chlorogenic acid: preparation, characterization, and antioxidant capacity. Iran Polym J 30, 81–91 (2021). https://doi.org/10.1007/s13726-020-00875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00875-9

Keywords

Navigation