Skip to main content
Log in

Microwave-induced shape-memory poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks chemically linked to SiC nanoparticles

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Microwave (MW)-induced shape-memory poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) interpenetrating polymer networks (SMP-IPNs) were prepared through in situ polymerization. Silicon carbide (SiC) nanoparticles were modified by 3-(methacryloyloxy) propyltrimethoxysilane (KH570). 3-(Methacryloyloxy) propyltrimethoxysilane was covalently bonded on the surface of SiC through the reaction of silanol and the methoxy groups. The polymerization of acrylic acid (AA) using N,N′-methylenebis (2-propenamide) (MBA) as cross-linker in PVA solution was initiated through the double bonds of KH-570 grafted on SiC, leading to a PAA polymer network cross-linked with MBA. The PVA molecular chains run through the PAA cross-linking network and form an IPN structure. Therefore, SiC as a strong MW absorbing material could be chemically cross-linked into polymer matrix. The effect of composition on the properties of SMP-IPN was studied using dynamic mechanical analysis, dielectric properties and shape memory effect (SME) test. The results showed that the introduction of SiC in IPNs not only provided samples with excellent MW-induced shape memory effect (SME), but also caused a higher equilibrium temperature under MW irradiation. Moreover, both SiC content and applied MW power affected the shape recovery properties of PVA/PAA interpenetrating composites. MW-induced SMPs offered great advantages such as fast recovery, high recovery rate, and remote actuation. This study provides the potential applications of the fast and environmentally friendly SMPs used as MW-responsive sensors, implantable devices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior enabling materials and mechanistic understanding. Prog Polym Sci 49:79–120

    Article  CAS  Google Scholar 

  2. Pilate F, Toncheva A, Dubois P, Raquez J (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294

    Article  CAS  Google Scholar 

  3. Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A (2016) Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Deliver Rev 107:136–152

    Article  CAS  Google Scholar 

  4. Liu T, Zhou T, Yao Y, Zhang F, Liu L, Liu Y, Leng J (2017) Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Composite Part A 100:20–30

    Article  CAS  Google Scholar 

  5. Saralegi A, Foster EJ, Weder C, Eceiza A, Corcuera MA (2014) Thermoplastic shape memory polyurethanes based on natural oils. Smart Mater Struct 23:25033–25042

    Article  CAS  Google Scholar 

  6. Gayla JB, Matthew K, Chen W, Christopher N (2014) New directions in the chemistry of shape memory polymers. Polymer 55:5849–5872

    Article  CAS  Google Scholar 

  7. Wang H, Luo H, Zhou X, Lin Y, Zhao G, Yi G, Cheng X, Wang H, Li J (2017) Conductive multi-shape polymer composites towards stimuli sensing. Mater Lett 198:132–135

    Article  CAS  Google Scholar 

  8. Brown R, Singh K, Khan F (2017) Fabrication and vibration characterization of electrically triggered shape memory polymer beams. Polym Test 61:74–82

    Article  CAS  Google Scholar 

  9. Kumpfer JR, Rowan SJ (2011) Thermo- photo- and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874

    Article  CAS  PubMed  Google Scholar 

  10. Leng J, Wu X, Liu Y (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114:2455–2460

    Article  CAS  Google Scholar 

  11. Li W, Gong T, Chen HM, Wang L, Li JR, Zhou SB (2013) Tuning surface micropattern features using a shape memory functional polymer. RSC Adv 3:9865–9874

    Article  CAS  Google Scholar 

  12. Luo HS, Li ZW, Yi GB, Zu XH, Wang H, Wang YJ, Huang HL, Hu JW, Liang ZF, Zhong BB (2014) Electro-responsive silver nanowire-shape memory polymer composites. Mater Lett 134:172–175

    Article  CAS  Google Scholar 

  13. Thakur VK, Singha AS, Thakur MK (2012) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym Plast Technol Eng 51:1598–1604

    Article  CAS  Google Scholar 

  14. He Z, Satarkar N, Xie NT, Cheng Y, Hilt JZ (2011) Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv Mater 23:3192–3196

    Article  CAS  PubMed  Google Scholar 

  15. Yu K, Liu Y, Leng J (2014) Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv 4:2961–2968

    Article  CAS  Google Scholar 

  16. Zhang F, Zhou T, Liu Y, Leng J (2015) Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci Rep 5:11152–11164

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du H, Yu Y, Jiang G, Zhang J, Bao JJ (2011) Microwave-induced shape-memory effect of chemically crosslinked moist poly(vinyl alcohol) networks. Chem Phys 212:1460–1468

    CAS  Google Scholar 

  18. Du H, Song Z, Wang JJ, Liang ZH, Shen YH, You F (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sens Actuators A 228:1–8

    Article  CAS  Google Scholar 

  19. Liu X, Zhang Z, Wu Q (2011) Absorption properties of carbon black/silicon carbide microwave absorbers. Compos Part B 42:326–329

    Article  CAS  Google Scholar 

  20. Jennifer MK, Kappe C (2006) Silicon carbide passive heating elements in microwave assisted organic synthesis. J Org Chem 71:4651–4658

    Article  CAS  Google Scholar 

  21. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4:1–17

    Article  CAS  Google Scholar 

  22. Madhumitha G, Fowsiya J, Roopan SM, Thakur VK (2018) Recent advances in starch-clay nanocomposites. Int J Polym Anal Charact 23:331–345

    Article  CAS  Google Scholar 

  23. Chatani S, Wang C, Podgórski M, Bowman CN (2014) Triple shape memory materials incorporating two distinct polymer networks formed by selective thiol–michael addition reactions. Macromolecules 47:4949–4954

    Article  CAS  Google Scholar 

  24. Zhang S, Feng Y, Zhang L, Sun J, Xu XK, Xu YS (2007) Novel interpenetrating networks with shape-memory properties. J Polym Sci Part A Polym Chem 5:768–775

    Article  CAS  Google Scholar 

  25. He M, Chen W, Dong X (2001) Polymer physics. Fudan University, Shanghai

    Google Scholar 

  26. Shi Y, Yoonessi M, Weiss RA (2013) High temperature shape memory polymers. Macromolecules 46:4160–4167

    Article  CAS  Google Scholar 

  27. Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active Shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl Mater Interfaces 2:3506–3514

    Article  CAS  PubMed  Google Scholar 

  28. Yu X, Zhou S, Zheng X, Gou T, Xiao Y, Song B (2009) A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology 20:235702–235711

    Article  CAS  PubMed  Google Scholar 

  29. Du H, Zhang J (2012) The synthesis of poly(vinyl cinnamates) with light-induced shape fixity properties. Sens Actuators A 179:114–120

    Article  CAS  Google Scholar 

  30. Du H, Zhang J (2010) Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6:3370–3376

    Article  CAS  Google Scholar 

  31. Du H, Zhang J (2010) Shape memory polymer based on chemically cross-linked poly(vinyl alcohol) containing a small number of water molecules. Colloid Polym Sci 288:15–24

    Article  CAS  Google Scholar 

  32. Guo Z, Kim TA, Lei K, Pereira T, Sugar JG, Hahn HT (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 68:164–170

    Article  CAS  Google Scholar 

  33. Lin J, Chen L (1998) Study on Shape-memory behavior of polyether based polyurethanes: I influence of the hard-segment content. J Appl Polym Sci 69:1563–1574

    Article  CAS  Google Scholar 

  34. Lin J, Chen L (1998) Study on Shape-memory behavior of polyether-based polyurethanes: II influence of soft-segment molecular weight. J Appl Polym Sci 69:1575–1586

    Article  CAS  Google Scholar 

  35. Thakur MK, Gupta RK, Thakur VK (2014) Surface modification of cellulose using silane coupling agent. Carbohydr Polym 111:849–855

    Article  CAS  PubMed  Google Scholar 

  36. Tsai Y, Tai C, Tsai SJ, Tsai FJ (2008) Shape memory effects of poly(ethylene terephthalate-co-ethylene succinate) random copolymers. Eur Polym J 44:550–554

    Article  CAS  Google Scholar 

  37. Yakacki CM, Shandas R, Lanning C, Rech B, Ecksrein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterial 28:2255–2263

    Article  CAS  Google Scholar 

  38. Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdev 4:89–96

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (NNSFC, No. 21304065).

Funding

This study was funded by the National Natural Science Foundation of China (Grant Number 21304065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Ren, Z. & Xu, Y. Microwave-induced shape-memory poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks chemically linked to SiC nanoparticles. Iran Polym J 27, 621–628 (2018). https://doi.org/10.1007/s13726-018-0638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0638-1

Keywords

Navigation