Skip to main content
Log in

Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering

  • Review Paper
  • Published:
Dairy Science & Technology

Abstract

Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms. Various attempts have been made in order to get insights into enzyme structure/function relationships for designing improved biocatalysts. This review provides an overview of historical background and recent achievements on the classification and structural characteristics of such enzymes as related to their functional properties, mechanism of catalysis, pH, and temperature dependence, substrate specificities, mechanism of inhibition, enzyme engineering, and technological applications with the focus on cheese manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas CA, Bao WL (2009) Increased fiber hydrolysis by protease addition. U.S. Patent 0098638 A1.

  • Abdel Malak CA, Abou El Adab IFG, Vukashinovic V, Zalunin IA, Timokhina EA, Lavrenovat GI, Stepanov VM (1996) Buffalo (Bos buffali L.) chymosin purification and properties. Comp Biochem Physiol 113:57–62

    Google Scholar 

  • Ageitos JM, Vallejo JA, Sestelo ABF, Poza M, Villa TG (2007) Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13. J Appl Microbiol 103:2205–2213

    Article  CAS  Google Scholar 

  • Ahmed SA, Helmy WA (2012) Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegate milk-clotting enzymes. Braz J Chem Eng 29:69–76

    Article  CAS  Google Scholar 

  • Aikawa J, Yamashita T, Nishiyama M, Horinouchi S, Beppu T (1990) Effects of glycosylation on the secretion and enzyme activity of Mucor rennin, an aspartic proteinase of Mucor pusillus produced by recombinant yeast. J Biol Chem 265:13955–13959

    CAS  Google Scholar 

  • Andrade VS, Sarubbo LA, Fukushima K, Miyaji M, Nishimura K, de Campos-Takaki GM (2002) Production of extracellular proteases by Mucor circinelloides using d-glucose as carbon source. Braz J Microbiol 33:106–110

    Article  CAS  Google Scholar 

  • Andreeva NS, Rumsh LD (2001) Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci 10:2439–2450

    Article  CAS  Google Scholar 

  • Anonymous (2012) Global and China industrial enzyme report 2012–2014. http://www.prweb.com/releases/industrial-enzyme-market/analysis-2014/prweb10164368.htm. Accessed December 2012

  • Asakura T, Watanabe H, Abe K, Arai S (1997) Oryzasin as an aspartic proteinase occurring in rice seeds: purification, characterization and application to milk clotting. J Agr Food Chem 45:1070–1075

    Article  CAS  Google Scholar 

  • Ashie INA, Sorensen TL, Nielsen PM (2002) Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J Food Sci 67:2138–2142

    Article  CAS  Google Scholar 

  • Bansal N, Drake MA, Piraino P, Broe ML, Harboe M, Fox PF, McSweeney PLH (2009) Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. Int Dairy J 19:510–517

    Google Scholar 

  • Blundell TL, Jenkins JA, Sewell BT, Pearl LH, Cooper JB, Tickle IJ, Veerapandian B, Wood SP (1990) X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 Å resolution of endothiapepsin. J Mol Biol 211(4):919–941

    Google Scholar 

  • Broome MC, Hickey MW (1990) Comparison of fermentation produced chymosin and calf rennet in cheddar cheese. Aust J Dairy Tech 45:53–59

    CAS  Google Scholar 

  • Bruno MA, Lazza CM, Errasti ME, López LMI, Caffini NO, Pardo MF (2010) Milk clotting and proteolytic activity of an enzyme preparation from Bromelia hieronymi fruits. LWT Food Sci Technol 43:695–701

    Article  CAS  Google Scholar 

  • Brutti CB, Pardo MF, Caffini NO, Natalucci CL (2012) Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT - Food Sci Technol 45:172–179

    Article  CAS  Google Scholar 

  • Bustamante MA, Virto M, Aramburu M, Barron LJR, Perez-Elortondo FJ, Albisu M, de Renobales M (2003) Lamb rennet paste in ovine cheese (Idiazabal) manufacture. Proteolysis and relationship between analytical and sensory parameters. Int Dairy J 13:547–557

    Google Scholar 

  • Calandrelli M, Rubino R, Masoero G, Clementi E, Monrone G, Pizzillo M, Nicastro D (1997) Effect of kidrennet production technology on its microbiological characteristics and on the chemical composition of Semicotto goat cheese. Scienza e Tecnica Lattiero-Casearia 48:343–360

    Google Scholar 

  • Cavalcanti MTH, Martinez CR, Furtado VC, Neto BB, Teixeira MF, Lima Filho JL, Porto ALF (2005) Milk-clotting protease production by Nocardiopsis sp. in an inexpensive medium. World J Microbiol Biotechnol 21:151–154

    Google Scholar 

  • Chen H, Zhang G, Zhang Y, Dong Y, Yang K (2000) Functional implications of disulfide bond, Cys206-Cys210, in recombinant prochymosin (chymosin). Biochem 39:12140–12148

    Article  CAS  Google Scholar 

  • Chen X, Pfeil JE, Gal S (2002) The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur J Biochem 269:4675–4684

    Article  CAS  Google Scholar 

  • Chitpinityol S, Crabbe MJC (1998) Chymosin and aspartic proteinases. Food Chem 61(4):395–418

    Article  CAS  Google Scholar 

  • Cho SW, Kim N, Choi MU, Shin W (2001) Structure of aspergillopepsin I from Aspergillus phoenicis: variations of the S1′-S2 subsite in aspartic proteinases. Acta Cryst 57:948–956

    CAS  Google Scholar 

  • Claverie-Martin F, Vega-Hernandez MC (2007) Aspartic proteases in cheese making. In: Polaina J, Maccabe AP (eds) Industrial Enzymes. Springer, Netherlands, pp 207–219

    Chapter  Google Scholar 

  • Coates L, Erskine PT, Wood SP, Myles DA, Cooper JB (2001) A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism. Biochem 40(44):13149–13157

    Article  CAS  Google Scholar 

  • Cordeiro MC, Pais MS, Brodelius PE (1998) Cynara cardunculus subsp. flavescens (cardoon): in vitro culture, and the production of cyprosins (milk-clotting enzymes). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Heidelberg, pp 132–153

    Google Scholar 

  • Costa DS, Pereira S, Moore I, Pissarra J (2010) Dissecting cardosin B trafficking pathways in heterologous systems. Planta 232:1517–1530

    Article  Google Scholar 

  • Dalgleish DG (1999) The enzymatic coagulation of milk. In: Fox PF (ed) Cheese: chemistry, physics and microbiology. Aspen Publication Inc, Gaithersburg, pp 69–100

    Google Scholar 

  • Dash C, Ahmad A, Nath D, Rao M (2001) Novel bifunctional inhibitor of xylanase and aspartic protease: implications for inhibition of fungal growth. Antimicrob Agents Che 45(7):2008–2017

    Article  CAS  Google Scholar 

  • Davies DR (1990) The structure and function of aspartic proteases. Annu Rev Biophys Biomol Struct 19:189–215

    Article  CAS  Google Scholar 

  • Dekker PJT (2007) Rennets, US Patent US7404977.

  • Devaraj KB, Gowda LR, Prakash V (2008) An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochem 69:647–655

    Article  CAS  Google Scholar 

  • Ding Z, Wang W, Wang B, Ouyang A, Xiao S, Wang Y, Liu S, Ding M, Zhang L, Shi G (2012) Production and characterization of milk-clotting enzyme from Bacillus amyloliquefaciens JNU002 by submerged fermentation. Eur Food Res Technol 234:415–421

    Google Scholar 

  • Dunn BM (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 102:4431–4458

    Article  CAS  Google Scholar 

  • Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B (2007) Aspartic proteases in drug discovery. Curr Pharm Des 13(3):271–285

    Article  CAS  Google Scholar 

  • Egito AS, Girardet JM, Laguna LE, Poirson C, Molle´ D, Miclo L, Humbert G, Gaillard JL (2007) Milk-clotting activity of enzyme extracts from sunflower and albizia seeds and specific hydrolysis of bovine κ-casein. Int Dairy J 17:816–825

    Google Scholar 

  • Elagamy EI (2000) Physicochemical, molecular and immunological characterization of camel calf rennet: a comparison with buffalo rennet. J Dairy Res 67:73–81

    Article  CAS  Google Scholar 

  • El-Baky HA, Linke D, Nimtz M, Berger RG (2011) PsoP1, a milk-clotting aspartic peptidase from the Basidiomycete fungus Piptoporus soloniensis. J Agric Food Chem 59(18):10311–10316

    Article  CAS  Google Scholar 

  • Etayo I, Pérez Elortondo JF, Gil PF, Albisu M, Virto M, Conde S, Rodriguez Barron LJ, Nájera AI, Gómez-Hidalgo ME, Delgado C (2006) Hygienic quality, lipolysis and sensory properties of Spanish protected designation of origin ewe’s milk cheeses manufactured with lamb rennet paste. La Lait 86:415–434

  • Faro C, Ramalho-Santos M, Vieira M, Mendes A, Simõ I, Andrade R, Veríssimo P, Lin X, Tang J, Pires E (1999) Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. J Biol Chem 272(40):28724–28729

    Google Scholar 

  • Fernandez-Lahore HM, Auday RM, Fraile ER, Biscoglio De Jimenes Bonino M, Pirpignan L, Machalinski C, Cascone O (1999) Purification and characterization of an aspartic proteinase from mesophilic Mucor sp. solid- state cultures. J Pept Res 53:599–605

  • Filippova IY, Lysogorskaia EN (2003) Modified proteinases in peptide synthesis in organic media. Russ J Bioorganic Chem 29:544–550

    Article  Google Scholar 

  • Flamm EL (1991) How FDA approved chymosin: a case history. Biotechnol 9:349–351

    Article  CAS  Google Scholar 

  • Foltmann B (1999) General and molecular aspects of rennets. In: Fox PF (ed) Cheese: chemistry, physics and microbiology. Aspen Publication Inc, Gaithersburg, pp 37–68

    Google Scholar 

  • Fox PF (2007) Exogenous enzymes in dairy technology—a review. J Food Biochem 17(3):173–199

    Article  Google Scholar 

  • Fox PF, McSweeney PLH (1999) Rennets: their role in milk coagulation and cheese ripening. In: Law BA (ed) Microbiology and biochemistry of cheese and fermented milk. Blackie Academic and Professional, London, pp 1–49

    Google Scholar 

  • Fraile ER, Muse JO, Bernardinelli SE (1981) Milk-clotting enzyme from Mucor bacilliformis. Eur J Appl Microbiol Biotechnol 13:191–193

    Article  CAS  Google Scholar 

  • Frazao C, Bento I, Costa J, Soares CM, Veríssimo P, Faro C, Pires E, Cooper J, Larrondo MA (1999) Crystal structure of cardosin A, a glycosilated and Arg–Gly–Asp-containing aspartic proteinase from the flowers of Cynara cardunculus L. J Biol Chem 274:27694–27701

    Google Scholar 

  • Fujimoto Z, Fujii Y, Kaneko S, Kobayashi H, Mizuno H (2004) Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J Mol Biol 341:1227–1235

    Article  CAS  Google Scholar 

  • Gilliland GL, Winborn EL, Nachman J, Wlodawer A (1990) The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution. Proteins Struct Funct Genet 8:82–101

    Article  CAS  Google Scholar 

  • Havera HJ, Humphreys JD (1988) Method for increasing the milk clotting activity of thermolabile Rhizomucor pusillus rennet. US Patent 4722900

  • Hirata D, Fukui S, Yamashita I (1988) Nucleotide sequence of the secretable acid protease gene PEP1 in the yeast Saccharomycopsis fibuligera. Agric Biol Chem 52:2647–2649

    Article  CAS  Google Scholar 

  • Horimoto Y, Dee DR, Yada RY (2009) Multifunctional aspartic peptidase prosegments. New Biotechnol 25(5):318–324

    Article  CAS  Google Scholar 

  • Ingr M, Uhlíková T, Strisovsky K, Majerová E, Konvalinka J (2003) Kinetics of the dimerization of retroviral proteases: the “fireman’s grip” and dimerization. Protein Sci 12(10):2173–2182

    Article  CAS  Google Scholar 

  • Inoue H, Hayashi T, Huang XP, Lu JF, Athauda SBP, Kong KH, Yamagata H, Udaka S, Takahashi K (1996) Heterologous expression and site-directed mutagenesis studies on the activation mechanism and the roles of the basic residues in the prosegment of aspergillopepsinogen I. Eur J Biochem 237:719–725

    Google Scholar 

  • Irigoyen A, Izco JM, Ibáñez FC, Torre P (2002) Influence of calf of lamb rennet on the physico chemical, proteolytic and sensory characteristics of an ewe’s-milk cheese. Int Dairy J 12:27–34

    Article  CAS  Google Scholar 

  • Jacob M, Jaros D, Rohm H (2011) Recent advances in milk clotting enzymes. Int J Dairy Technol 64:14–33

    Article  CAS  Google Scholar 

  • James MN, Sielecki A, Salituro F, Rich DH, Hofmann T (1982) Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc Natl Acad Sci U S A 79(20):6137–6141

    Article  CAS  Google Scholar 

  • James MNG, Sielecki A, Hayakawa K, Gelb MH (1992) Crystallographic analysis of transition state mimics bound to penicillopepsin: difuorostatine- and difuorostatone-containing peptides. Biochem 31:3872–3886

    Article  CAS  Google Scholar 

  • Jensen LJ, Mølgaard A, Poulsen JCN, Harboe MK, Simonsen JB, Lorentzen AM, Hjernø K, van den Brink JM, Qvist KB, Larsena S (2013) Camel and bovine chymosin: the relationship between their structures and cheese-making properties. Acta Cryst 69:901–913

    Google Scholar 

  • Johnson ME, Lucey JA (2006) Major technological advances and trends in cheese. J Dairy Sci 89:1174–1178

    Article  CAS  Google Scholar 

  • Kamitori S, Ohtaki A, Ino H, Takeuchi M (2003) Crystal structures of Aspergillus oryzae aspartic proteinase and its complex with an inhibitor pepstatin at 1.9 Å resolution. J Mol Biol 326:1503–1511

    Article  CAS  Google Scholar 

  • Kanlayakrit W, Maweang M (2006) Production of seasoning “Mirin” from Thai rice by fermentation. Kasetsart J 40:39–46

    CAS  Google Scholar 

  • Kappeler SR, van den Brink HM, Rahbeck-Nielsen H, Farah Z, Puhan Z, Bech Hansen E, Johansen E (2006) Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochem Biophys Res Commun 342:647–654

    Google Scholar 

  • Koelsch G, Mares M, Metcalf P, Fusek M (1994) Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett 343:6–10

    Article  CAS  Google Scholar 

  • Kulkarni A, Rao M (2009) Differential elicitation of an aspartic protease inhibitor: regulation of endogenous protease and initial events in germination in seeds of Vigna radiate. Peptides 30:2118–2126

    Article  CAS  Google Scholar 

  • Kumar AG, Nagesh N, Prabhakar TG, Sekaran G (2008) Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresource Technol 99:2364–2372

    Article  CAS  Google Scholar 

  • Kumar A, Grover S, Sharma J, Batish VK (2010) Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 30(4):243–258

    Article  CAS  Google Scholar 

  • Kumar A, Rao M (2006) Biochemical characterization of a low molecular weight aspartic protease inhibitor from thermo-tolerant Bacillus licheniformis: kinetic interactions with pepsin. Biochim Biophys 1760:1845–1856

    Article  CAS  Google Scholar 

  • Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736

    Article  CAS  Google Scholar 

  • Li J, Chi Z, Wang X (2010) Cloning of the SAP6 gene of Metschnikowia reukaufii and its heterologous expression and characterization in Escherichia coli. Microbial Res 165(3):173–182

    Article  CAS  Google Scholar 

  • Lufrano D, Faro R, Castanheira P, Parisi G, Veríssimo P, Vairo-Cavalli S, Simões I, Faro C (2012) Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). Phytochem 81:7–18

    Google Scholar 

  • Machalinski C, Pirpignani ML, Marino C, Mantegazza A, de Jiménez Bonino MB (2006) Structural aspect of Mucor bacilliformis proteinase, a new member of the aspartyl-proteinase family. J Biotechnol 123:443–452

    Article  CAS  Google Scholar 

  • Marcial J, Santos AI P d l, Fernández FJ, Díaz-Godínez G, Montiel-González AM, Tomasini A (2011) Characterization of an aspartic protease produced by Amylomyces rouxii. Rev Mex Ing Quím 10(1):9–16

    CAS  Google Scholar 

  • Mellor J, Dobson MJ, Roberts NA, Tuite MF, Emtage JS, White S, Lowe PA, Patel T, Kingsman AJ, Kingsman SM (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14

  • Menon V, Rao M (2012) A low-molecular-mass aspartic protease inhibitor from a novel Penicillium sp.: implications in combating fungal infections. Microbiology 158:1897–1907

    Google Scholar 

  • Merheb-Dini C, Gomes E, Boscolo M, da Silva R (2010) Production and characterization of a milk-clotting protease in the crude enzymatic extract from the newly isolated Thermomucor indicae-seudaticae N31 (Milk-clotting protease from the newly isolated Thermomucor indicae-seudaticae N31). Food Chem 120:87–93

    Article  CAS  Google Scholar 

  • Mohanty AK, Mukhopadhyay UK, Kaushik JK, Grover S, Batish VK (2003) Isolation, purification and characterization of chymosin from riverine buffalo (Bubalos bubalis). J Dairy Res 70:37–43

    Article  CAS  Google Scholar 

  • Mutlu A, Gal S (1999) Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569–576

    Article  CAS  Google Scholar 

  • Nájera AI, de Renobales M, Barron LJR (2003) Effects of pH, temperature, CaCl2 and enzyme concentrations on the rennet-clotting properties of milk: a multifactorial study. Food Chem 80:345–352

    Article  Google Scholar 

  • Nascimento AS, Krauchenco S, Golubev AM, Gustchina A, Wlodawer A, Polikarpov I (2008) Statistical coupling analysis of aspartic proteinases based on crystal structures of the Trichoderma reesei enzyme and its complex with pepstatin A. J Mol Biol 382:763–778

    Article  CAS  Google Scholar 

  • Newman M, Safro M, Frazao C, Khan G, Zdanov A, Tickle IJ, Blundell TL, Andreeva N (1991) X-ray analysis of aspartic proteinases IV. Structure and refinement at 2.2 Å resolution of bovine chymosin. J Mol Biol 221:1295–1309

    Google Scholar 

  • Newman M, Watson F, Roychowdhury P, Jones H, Badasso M, Cleasby A, Wood SP, Tickle IJ, Blundell TL (1993) X-ray analyses of aspartic proteinases V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus. J Mol Biol 230:260–283

    Google Scholar 

  • Nielsen PH, Malmos H, Damhus T, Diderichsen B, Nielsen HK, Simonsen M, Schiff HE, Oestergaard A, Olsen HS, Eigtved P, Nielsen TK (1994) Enzyme applications (industrial). In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 9, 4th edn. Wiley, New York, pp. 567–620

  • Northrop DB (2001) Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc Chem Res 34(10):790–797

    Article  CAS  Google Scholar 

  • Nugent PG, Albert A, Orprayoon P, Wilsher J, Pitts JE, Blundell TL, Dhanaraj V (1996) Protein engineering loops in aspartic proteinases: site-directed mutagenesis, biochemical characterization and X-ray analysis of chymosin with a replaced loop from rhizopuspepsin. Prot Eng 9(10):885–893

    Google Scholar 

  • O’Sullivan M, Fox PF (1991) Evaluation of microbial chymosin from genetically engineered Kluyveromyces lactis. Food Biotechnol 5(1):19–32

    Article  Google Scholar 

  • Okoniewska M, Tanaka T, Yada RY (1999) The role of the flap residue, threonine 77, in the activation and catalytic activity of pepsin A. Prot Eng 12(1):55–61

    Article  CAS  Google Scholar 

  • Palmer DS, Christensen AU, Sørensen J, Celik L, Qvist KB, Schiøtt B (2010) Bovine chymosin: a computational study of recognition and binding of bovine κ-casein. Biochem 49:2563–2573

    Article  CAS  Google Scholar 

  • Park YN, Aikawa J, Nishiyama M, Horinouchi S, Beppu T (1996) Involvement of a residue at position 75 in the catalytic mechanism of a fungal aspartic proteinase, Rhizomucor pusillus pepsin. Replacement of tyrosine 75 on the flap by asparagines enhances catalytic efficiency. Protein Eng 9:869–875

    Article  CAS  Google Scholar 

  • Pedersen VB, Christensen KA, Foltmann B (1979) Investigations on the activation of bovine prochymosin. Eur J Biochem 94(2):573–580

    Article  CAS  Google Scholar 

  • Phelan M, Aherne A, FitzGerald RJ, O’Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643–654

    Article  CAS  Google Scholar 

  • Pontual EV, Carvalho BEA, Bezerra RS, Coelho LCBB, Napoleão TH, Paiva PMG (2012) Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chem 135:1848–1854

    Article  CAS  Google Scholar 

  • Poza M, Sieiro C, Carreira L, Barros-Velazquez J, Villa TG (2003) Production and characterization of the milk-clotting protease of Myxococcus xanthus strain 422. J Ind Microbiol Biotechnol 30:691–698

    Article  CAS  Google Scholar 

  • Pungercar J, Strukelj B, Gubensek F, Turk V, Kregar I (1990) Complete primary structure of lamb preprochymosin deduced from cDNA. Nucleic Acid Res 18:1

    Article  Google Scholar 

  • Rampilli M, Larsen R, Harboe M (2005) Natural heterogeneity of chymosin and pepsin in extracts of bovine stomachs. Int Dairy J 15:1130–1137

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  Google Scholar 

  • Raposo S, Domingos A (2008) Purification and characterization milk-clotting aspartic proteinasesfrom Centaurea calcitrapa cell suspension cultures. Process Biochem 43:139–144

    Article  CAS  Google Scholar 

  • Rawlings ND, Tolle DP, Barret AJ (2004) MEROPS: the peptidase database. Nucleic Acid Res 32, Database issue, D160-D164. http://www.merops.sanger.ac.uk/. Accessed December 2012

  • Rawlings ND, Bateman A (2009) Pepsin homologues in bacteria. BMC Genomics 10:437. doi:10.1186/1471-2164-10-437

    Article  Google Scholar 

  • Richter C, Tanaka T, Koseki T, Yada RY (1999) Contribution of a prosegment lysine residue to the function and structure of porcine pepsinogen A and its active form pepsin A. Eur J Biochem 261:746–752

    Article  CAS  Google Scholar 

  • Rogeli I, Perko B, Francky A, Penca V, Pungercar J (2001) Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J Dairy Sci 84(5):1020–1026

    Article  Google Scholar 

  • Roseiro LB, Barbosa M, Ames JM, Wilbey RA (2003) Cheesemaking with vegetable coagulants-the use of Cynara L. for the production of ovine milk cheeses. Int J Dairy Tech 56:76–85

    Article  Google Scholar 

  • Sampaio PN, Fortes AM, Cabral JMS, Pais MS, Fonseca LP (2008) Production and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303-1A) strain. J Biosci Bioeng 105(4):305–312

    Article  CAS  Google Scholar 

  • Siala R, Sellami-Kamoun A, Hajji M, Abid I, Gharsallah N, Nasri M (2009) Extracellular acid protease from Aspergillus niger I1: purification and characterization. Afr J Biotechnol 8(18):4582–4589

    CAS  Google Scholar 

  • Sidrach L, García-Cánovas F, Tudela J, Rodríguez-López NJ (2005) Purification of cynarases from artichoke (Cynara scolymus L.): enzymatic properties of cynarase A. Phytochem 66:41–49

    Article  CAS  Google Scholar 

  • Sielecki AR, Fedorov AA, Bodhoo A, Andreeva NS, James MNG (1990) Molecular and crystal structures of monoclinic porcine pepsin crystals refined at 1.8 Å resolution. J Mol Biol 214:143–170

    Article  CAS  Google Scholar 

  • Silva SV, Malcata XM (1999) On the activity and specificity of cardosin B, a plant proteinase, on ovine caseins. Food Chem 67:373–378

    Article  CAS  Google Scholar 

  • Simöes I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  Google Scholar 

  • Smith JL, Billings GE, Yada RY (1991) Chemical modification of amino groups in Mucor miehei Aspartyl proteinase, porcine pepsin and chymosin. 1. Structure and function. Agric Biol Chem 55:2009–2016

    Article  CAS  Google Scholar 

  • Suguna K, Bott RB, Padlan EA, Subrananian E, Sheriff S, Cohen GH, Davies DR (1987) Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis. J Mol Biol 196:877–900

    Google Scholar 

  • Szecsi PB (1992) The aspartic proteases. Scand J Clin Lab Invest 210:5–22

    Article  CAS  Google Scholar 

  • Tanaka T, Yada RY (2001) N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH. Protein Eng 14:669–674

    Article  CAS  Google Scholar 

  • Tang J (2010) Aspartic proteases: structure, function, and inhibition. In: Ghosh AK (ed) Aspartic acid proteases as therapeutic targets. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany. doi:10.1002/9783527630943

    Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22(4):181–188

    Google Scholar 

  • Thunell RK, Duersch JW, Ernstrom CA (1979) Thermal inactivation of residual milk clotting enzymes in whey. J Dairy Sci 62:373–377

    Article  CAS  Google Scholar 

  • Upadhyay VK, McSweeney PLH, Magboul AAA, Fox PF (2004) Proteolysis in cheese during ripening. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology: general aspects, vol 1, 3rd edn. Elsevier, London, pp 391–433

    Chapter  Google Scholar 

  • Vairo-Cavalli S, Claver S, Priolo N, Natalucci C (2005) Extraction and partial characterization of a coagulant preparation from Silybum marianum flowers. Its action on bovine caseinate. J Dairy Res 72(3):271–275

    Article  CAS  Google Scholar 

  • Vallejo JA, Ageitos JM, Poza M, Villa TG (2012) A comparative analysis of recombinant chymosins. J Dairy Sci 95(2):609–613

    Article  CAS  Google Scholar 

  • Vallejo JA, Ageitos JM, Poza M, Villa TG (2008) Cloning and expression of buffalo active chymosin in Pichia pastoris. J Agric Food Chem 56:10606–10610

    Article  CAS  Google Scholar 

  • Veerapandian B, Cooper JB, Sali A, Blundell TA, Rosati RL, Dominy BW, Damon DB, Hoover DJ (1992) Direct observation by X-ray analysis of the tetrahedral “intermediate” of aspartic proteinases. Protein Sci 1:322–328

    Google Scholar 

  • Veríssimo P, Faro C, Moir AJ, Lin Y, Tang J, Pires E (1996) Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur J Biochem 235:762–768

    Article  Google Scholar 

  • Vicente MS, Ibáñez FC, Barcina Y, Barron LJR (2000) Casein breakdown during ripening of Idiazabal cheese: influence of starter andrennet type. J Sci Food Agr 81:210–215

    Article  Google Scholar 

  • Vieira M, Pissarr J, Veríssimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45(5):529–539

    Google Scholar 

  • Vishwanatha KS, Appu Rao AG, Singh SA (2010) Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341. Appl Microbiol Biotechnol 85(6):1849–1859

    Article  CAS  Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellema A, van Boekel MAJS (1999) Dairy technology: principles of milk properties and processes, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Yamashita T, Higashi S, Higashi T, Machida H, Iwasaki S, Beppu T (1994) Protease with low thermostability derived from Mucor pusillus. U. S. Patent 5332668

  • Yang J, Teplyakov A, Quail JW (1997) Crystal structure of the aspartic proteinase from Rhizomucor miehei at 2.15-Å resolution. J Mol Biol 268:449–459

    Article  CAS  Google Scholar 

  • Yegin S, Fernandez-Lahore M (2013) A thermolabile aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning and functional expression in Pichia pastoris. Mol Biotechnol. 54:661–672

    Google Scholar 

  • Yegin S, Fernandez-Lahore M, Gama-Salgado AJ, Guvenc U, Goksungur Y, Tari C (2011) Aspartic proteinases from Mucor spp. in cheese manufacturing. Appl Microbiol Biotechnol 89:949–960

    Article  CAS  Google Scholar 

  • Yegin S, Goksungur Y, Fernandez-Lahore M (2012) Purification, structural characterization, and technological properties of an aspartyl proteinase from submerged cultures of Mucor mucedo DSM 809. Food Chem 133(4):1312–1319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirma Yegin.

About this article

Cite this article

Yegin, S., Dekker, P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Sci. & Technol. 93, 565–594 (2013). https://doi.org/10.1007/s13594-013-0137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-013-0137-2

Keywords

Navigation