Skip to main content
Log in

Dissecting cardosin B trafficking pathways in heterologous systems

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In cardoon pistils, while cardosin A is detected in the vacuoles of stigmatic papillae, cardosin B accumulates in the extracellular matrix of the transmitting tissue. Given cardosins’ high homology and yet different cellular localisation, cardosins represent a potentially useful model to understand and study the structural and functional plasticity of plant secretory pathways. The vacuolar targeting of cardosin A was replicated in heterologous species so the targeting of cardosin B was examined in these systems. Inducible expression in transgenic Arabidopsis and transient expression in tobacco epidermal cells were used in parallel to study cardosin B intracellular trafficking and localisation. Cardosin B was successfully expressed in both systems where it accumulated mainly in the vacuole but it was also detected in the cell wall. The glycosylation pattern of cardosin B in these systems was in accordance with that observed in cardoon high-mannose-type glycans, suggesting that either the glycans are inaccessible to the Golgi processing enzymes due to cardosin B conformation or the protein leaves the Golgi in an early step before Golgi-modifying enzymes are able to modify the glycans. Concerning cardosin B trafficking pathway, it is transported through the Golgi in a RAB-D2a-dependent route, and is delivered to the vacuole via the prevacuolar compartment in a RAB-F2b-dependent pathway. Since cardosin B is secreted in cardoon pistils, its localisation in the vacuoles in cardoon ovary and in heterologous systems, suggests that the differential targeting of cardosins A and B in cardoon pistils results principally from differences in the cells in which these two proteins are expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP:

Aspartic proteinases

ER:

Endoplasmic reticulum

PCD:

Programmed cell death

PSI:

Plant-specific insert

References

  • Batoko H, Zheng H, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218

    Article  CAS  PubMed  Google Scholar 

  • Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I (2005) New pOp/LhG4 vectors for stringent glucocorticoid dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  CAS  PubMed  Google Scholar 

  • Di Sansebastiano GP, Paris N, Marc-Martin S, Neuhaus JM (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457

    Article  CAS  PubMed  Google Scholar 

  • Duarte P (2005) Biogenesis of cardosin A: expression and biosynthetic pathways. PhD thesis, Faculty of Sciences, University of Porto, Portugal. Available at http://hdl.handle.net/10216/14338

  • Duarte P, Pissarra J, Moore I (2008) Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. Planta 227:1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Egas C, Lavoura N, Resende R, Brito R, Pires E, Pedroso de Lima M, Faro C (2000) The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage. J Biol Chem 275:38190–38196

    Article  CAS  PubMed  Google Scholar 

  • Faro C, Ramalho-Santos M, Vieira M, Mendes A, Simões I, Andrade R, Veríssimo P, Lin X, Tang J, Pires E (1999) Cloning and characterization of a cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. J Biol Chem 274:28724–28729

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo R, Duarte P, Pereira S, Pissarra J (2006) The embryo sac of Cynara cardunculus—ultrastructure of the development and localisation of the aspartic proteinase cardosin B. Sex Plant Reprod 19:93–101

    Article  CAS  Google Scholar 

  • Frazão C, Bento I, Costa J, Soares CM, Verissimo P, Faro C, Pires E, Cooper J, Carrondo MA (1999) Crystal structure of cardosin A, a glycosylated and Arg-Gly-Asp-containing aspartic proteinase from the flowers of Cynara cardunculus. J Biol Chem 274:27694–27701

    Article  PubMed  Google Scholar 

  • Hadlington J, Denecke J (2001) Transient expression, a tool to address questions in plant cell biology. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology: a practical approach. Oxford University Press, Oxford, pp 107–126

    Google Scholar 

  • Humair D, Felipe DH, Neuhaus J-M, Paris N (2001) Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor. Plant Cell 13:781–792

    Article  CAS  PubMed  Google Scholar 

  • Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C (2004) AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 117:6377–6389

    Article  CAS  PubMed  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A, Gomord V, Faye L (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  • Oliveira A (2009) Cardosin B expression during seed development—comparison between the native and heterologous systems. Master thesis. Faculty of Sciences, University of Porto, Portugal

  • Park M, Lee D, Lee G, Hwang I (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol 170:757–767

    Article  CAS  PubMed  Google Scholar 

  • Pereira C (2008) Cardosin A vacuolar determinants. Master thesis, Faculty of Sciences, University of Porto, Portugal

  • Pereira C, Soares da Costa D, Pereira S, Nogueira F, Albuquerque P, Teixeira J, Faro C, Pissarra J (2008) Cardosins in post-embryonic development of cardoon: towards an elucidation of biological function of plant aspartic proteinases. Protoplasma 232:203–213

    Article  CAS  PubMed  Google Scholar 

  • Pissarra J, Pereira C, Soares da Costa D, Figueiredo R, Duarte P, Teixeira J, Pereira S (2007) From flower to seed germination in Cynara cardunculus: a role for aspartic proteinases. Int J Plant Dev Biol 2:274–281

    Google Scholar 

  • Ramalho-Santos M, Pissarra J, Veríssimo P, Pereira S, Salema R, Pires E, Faro C (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203:204–212

    Article  CAS  PubMed  Google Scholar 

  • Ramalho-Santos M, Veríssimo P, Cortes L, Samyn B, Van Beeumen J, Pires E, Faro C (1998) Identification and proteolytic processing of procardosin A. Eur J Biochem 255:133–138

    Article  CAS  PubMed  Google Scholar 

  • Rayon C, Lerouge P, Faye L (1998) The protein N-glycosylation in plants. J Exp Bot 49:1463–1472

    Article  CAS  Google Scholar 

  • Rettinger J, Aschrafi A, Schmalzing G (2000) Roles of individual N-glycans for ATP potency and expression of the rat P2X1 receptor. J Biol Chem 275:33542–33547

    Article  CAS  PubMed  Google Scholar 

  • Robinson D, Langhans M, Saint-Jore-Dupas C, Hawes C (2008) BFA effects are tissue and not just plant specific. Trends Plant Sci 13:405–408

    Article  CAS  PubMed  Google Scholar 

  • Shaner N, Campbell R, Steinbach P, Giepmans B, Palmer A, Tsien R (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 12:1567–1572

    Article  Google Scholar 

  • Simões I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  PubMed  Google Scholar 

  • Simões I, Mueller EC, Otto A, Bur D, Cheung AY, Faro C, Pires E (2005) Molecular analysis of the interaction between cardosin A and phospholipase Dα. FEBS J 272:5786–5798

    Article  PubMed  Google Scholar 

  • Teh O-K, Moore I (2007) An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448:493–496

    Article  CAS  PubMed  Google Scholar 

  • Vieira M, Pissarra J, Veríssimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of a cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45:529–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Portuguese Foundation for Science and Technology—Fundação para a Ciência e a Tecnologia (FCT), PhD grant SFRH/BD/2004/17272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Soares da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, D.S., Pereira, S., Moore, I. et al. Dissecting cardosin B trafficking pathways in heterologous systems. Planta 232, 1517–1530 (2010). https://doi.org/10.1007/s00425-010-1276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1276-9

Keywords

Navigation