Skip to main content
Log in

Expression analysis of an APETALA1/FRUITFULL-like gene in Phalaenopsis sp. ‘Hatsuyuki’ (Orchidaceae)

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Members of the APETALA1 (AP1)/FRUITFULL (FUL)-like gene family of MADS-box genes play important roles in controlling the development of floral organs. To understand the molecular mechanisms of floral development in orchid, we isolated and characterized a Phalaenopsis AP1/FUL-like gene, PhalFUL. The results of phylogenetic analysis indicated that PhalFUL is in the monocots group of AP1/FUL-like gene. PhalFUL transcripts were detected in the flower buds, but not in vegetative organs. Moreover, in situ hybridization experiments revealed PhalFUL hybridization signals in all floral organ primordia at a very early stage of floral development, and continued expression in the column of whorls 3 and 4 until late developmental stages. These expression patterns were similar to those of the FUL-like genes in Arabidopsis (FUL) and Antirrhinum (DEFH28), suggesting that the PhalFUL is similar in function to FUL and DEFH28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baum, D.A. 2002. Identifying the genetic causes of phenotypic evolution: a review of experimental strategies. In: Developmental Genetics and Plant Evolution, (Cronk QCB, Bateman RM, Hawkins JA, eds.), Taylor and Francies, London, p. 493–507.

    Chapter  Google Scholar 

  • Becker, A., K.U. Winter, B. Meyer, H. Saedler, and G. Theissen. 2000. MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17:1425–1434.

    PubMed  CAS  Google Scholar 

  • Becker, A. and G. Theissen. 2003. The major clade of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29:464–484.

    Article  PubMed  CAS  Google Scholar 

  • Berbel, A., C. Navarro, C. Ferrandiz, L.A. Canas, F. Madueno, and J.P. Beltran. 2001. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different species. Plant J. 25:441–451.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1989. Gene directing flower development in Arabidopsis. Plant Cell 1:37–52.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., J. Alvarez, D. Weigel, E.M. Meyerowitz, and D.R. Smyth. 1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743.

    CAS  Google Scholar 

  • Carpenter, R. and E.S. Coen. 1990. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Gene Dev. 4:1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker, A., K. Tandre, I.J. Johanson, M. Englund, and P. Engström. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J. 40:546–557.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S., S. Jang, S. Chae, K.M. Chung, Y.H. Moon, G. An, and S.K. Jang. 1999. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40:419–429.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S. and E.M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Cozzolino, S. and A. Widmer. 2005. Orchid diversity: an evolutionary consequence of deception? Trends Ecol. Evol. 20:487–494.

    Article  PubMed  Google Scholar 

  • Davies, B., M. Egea-Cortines, E. de Andrade Silva, H. Saedler, and H. Sommer. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15:4330–4343.

    PubMed  CAS  Google Scholar 

  • Davies, B. and Z. Schwarz-Sommer. 1994. Control of floral organ identity by homeotic MADS box transcription factors. In: Nover L (ed.), Results and problems in cell differentiation. Springer, Berlin Heidelberg New York, p. 235–258.

    Google Scholar 

  • Egea-Cortines, M., H. Saedler, and H. Sommer. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18:5370–5379.

    Article  PubMed  CAS  Google Scholar 

  • Elo, A., J. Lemmetyinen, M.L. Turunen, L. Tikka, and T. Sopanen. 2001. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol. Plant 112:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Endress, P.K. 1994. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst. Evol. 192:79–97.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  • Ferrandiz, C., Q. Gu, R. Martienssen, and M.F. Yanofsky. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734.

    PubMed  CAS  Google Scholar 

  • Fornara, F., L. Parenicova, G. Falasca, N. Pelucci, S. Masiero, S. Ciannamea, Z. Lopez-Dee, M.M. Altamura, L. Colombo, and M.M. Kater. 2004. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol. 135:2207–2219.

    Article  PubMed  CAS  Google Scholar 

  • Freudenstein, J.V., E.M. Harris, and F.N. Rasmussen. 2002. The evolution of anther morphology in orchids: incumbent anthers, superposed pollinia, and the vandoid complex. Am. J. Bot. 89:1747–1755.

    Article  Google Scholar 

  • Frohman, M.A., M.K. Dush, and G.R. Martin. 1988. Rapid production of full-length cDNA from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85:8998–9002.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, H.P., K. Seipel, O. Georgiev, M. Hofferer, M. Hug, S. Rusconi, and W. Schaffner. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263:808–811.

    Article  PubMed  CAS  Google Scholar 

  • Gocal, G.F., R.W. King, C.A. Blundell, O.M. Schwartz, C.H. Andersen, and D. Weigel. 2001. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125:1788–1801.

    Article  PubMed  CAS  Google Scholar 

  • Greco, R., L. Stagi, L. Colombo, G.C. Angenent, M. Sari-Gorla, M.E. Pé. 1997. MADS box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet. 253:615–623.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Q., C. Ferrandiz, M.F. Yanofsky, and R. Martienssen. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517.

    PubMed  CAS  Google Scholar 

  • Gustafson-Brown, C., B. Savidge, and M.F. Yanofsky. 1994. Regulation of the Arabidopsis homeotic gene APETALA1. Cell 76:131–143.

    Article  PubMed  CAS  Google Scholar 

  • Hardenack, S., D. Ye, H. Saedler, and S. Grant. 1994. Comparison of MADS-box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell 6:1775–1787.

    Article  PubMed  CAS  Google Scholar 

  • Hasebe, M. 1999. Evolution of reproductive organs in land plants. J. Plant Res. 112:463–474.

    Article  Google Scholar 

  • Hempel, F.D., D. Weigel, M.A. Mandel, G. Ditta, P.C. Zambryski, L.J. Feldman, and M.F. Yanofsky. 1997. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124:3845–3853.

    PubMed  CAS  Google Scholar 

  • Heuer, S., S. Hansen, J. Bantin, R. Brettschneider, E. Kranz, H. Lörz, and T. Dresselhaus. 2001. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development in egg cells and early embryogenesis. Plant Physiol. 127:33–45.

    Article  PubMed  CAS  Google Scholar 

  • Huijser, P., J. Klein, W.E. Lönnig, H. Meijer, H. Saedler, and H. Sommer. 1992. Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene SQUAMOSA in Antirrhinum majus. EMBO J. 11:1239–1249.

    PubMed  CAS  Google Scholar 

  • Immink, R.G., D.J. Hannaple, S. Ferrario, M. Busscher, J. Franken, M.M. Lookeren Campagne, and G.C. Angenent. 1999. A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126:5117–5126.

    PubMed  CAS  Google Scholar 

  • Irish, V.F. and I.M. Sussex. 1990. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753.

    Article  PubMed  CAS  Google Scholar 

  • Irish, V.F. and Y.T. Yamamoto. 1995. Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum. Plant Cell 7:1635–1644.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, J.S., S. Lee, K.H. Jung, W.S. Yang, G.H. Yi, B.G. Oh, and G. An. 2000. Production of transgenic rice plants showing reduced heading data and plant height by ectopic expression of rice MADS box gene. Mol. Breed. 6:581–592.

    Article  CAS  Google Scholar 

  • Johansen, B. and S. Frederiksen. 2002. Orchid flowers: evolution and molecular development. In: Q.C.B. Cronk, R.M. Bateman, J.A. Hawkins (eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, p. 206–219.

    Chapter  Google Scholar 

  • Kato, Y., K. Aioi, Y. Omori, N. Takahata, and Y. Satta. 2003. Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide sequences: Implications for the origin and diversification of seagrasses in Japanese waters. Genes Genet. Syst. 78:329–342.

    Article  PubMed  CAS  Google Scholar 

  • Kempin, S.A., B. Savidge, and M.F. Yanofsky. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, E.M., R.L. Dorit, and V.F. Irish. 1998. Molecular evolution of gene controlling petal and stamen development: duplicate and divergence within the APETALA3 and PISTILLATA MADS-Box gene lineages. Genetics 149:765–783.

    PubMed  CAS  Google Scholar 

  • Kramer, E.M., M. Alejandra-Jaramillo, and V.S. Di Stilio. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023.

    Article  PubMed  CAS  Google Scholar 

  • Krizek, B.A. and E.M. Meyerowitz. 1996. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity protein. Proc. Natl. Acad. Sci. USA 93:4063–4070.

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka, J., R. Harcourt, W.J. Peacock, and E.S. Dennis. 1997. Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35:573–584.

    Article  PubMed  CAS  Google Scholar 

  • Li, G.S., Z. Meng, H.Z. Kong, Z.D. Chen, G. Theissen, and A.M. Lu. 2005. Characterization of candidate class A, B and E floral homeotic genes from the perianthless basal angiosperm Chloranthus spicatus (Chloranthaceae). Dev. Genes Evol. 215:437–449.

    Article  PubMed  CAS  Google Scholar 

  • Litt, A. and V.F. Irish. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833.

    PubMed  CAS  Google Scholar 

  • Maddison, W.P. 1991. The discovery and importance of multiple islands of most-parsimonious trees. Syst. Zool. 40:315–328.

    Article  Google Scholar 

  • Maes, T., N. van de Steene, J. Zethof, M. Karimi, M. D’Hauw, G. Mares, M. van Montagu, and T. Gerats. 2001. Petunia AP2-like genes and their role in flower and seed development. Plant Cell 13:229–244.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A., C. Gustafson-Brown, B. Savidge, and M.F. Yanofsky. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A. and M.F. Yanofsky. 1995a. A gene trigging flower formation in Arabidopsis. Nature 377:522–524.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A. and M.F. Yanofsky. 1995b. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, S. and D.J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950.

    Article  PubMed  CAS  Google Scholar 

  • Mena, M., M.A. Mandel, D.R. Lerner, M.F. Yanofsky, and R.J. Schmidt. 1995. A characterization of the MADS-box gene family in maize. Plant J. 8:845–854.

    Article  PubMed  CAS  Google Scholar 

  • Moon, Y.H., H.G. Kang, J.Y. Jung, J.S. Jeon, S.K. Sung, and G. An. 1999. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-like9 family proteins using a yeast two-hybrid system. Plant Physiol. 120:1193–1204.

    Article  PubMed  CAS  Google Scholar 

  • Müller, B.M., H. Saedler, and S. Zachgo. 2001. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J. 28:169–179.

    Article  PubMed  Google Scholar 

  • Münster, T., W. Deleu, L.U. Wingen, M. Ouzunova, J. Cacharron, W. Faigl, S. Werth, J.T. Kim, H. Saedler, and G. Theissen. 2002. Maize MADS-box genes galore. Maydica 47:287–301.

    Google Scholar 

  • Münster, T., J. Pahnke, A. Di Rosa, J.T. Kim, W. Martin, H. Saedler, and G. Theissen. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94:2415–2420.

    Article  PubMed  Google Scholar 

  • Murai, K., M. Miyamae, H. Kato, S. Takumi, and Y. Ogihara. 2003. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol. 44:1255–1265.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321–4325.

    Article  PubMed  CAS  Google Scholar 

  • Ng, M. and M.F. Yanofsky. 2001. Functional and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2:186–195.

    Article  PubMed  CAS  Google Scholar 

  • Nurrish, S.J. and R. Treisman. 1995. DNA binding specificity determinants in MADS-box transcriptional factors. Mol. Cell Biol. 15:4076–4085.

    PubMed  CAS  Google Scholar 

  • Perrière, G. and M. Gouy. 1996. www-Query: An on-line retrieval system for biological sequence banks. Biochemie 78:364–369.

    Article  Google Scholar 

  • Petersen, K., T. Didion, C.H. Andersen, K.K. Nielsen. 2004. MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J. Plant Physiol. 161:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli, L., M. Abu-Abeid, D. Zamir, W. Nacken, Z.S. Schwarz-Sommer, and E. Lifschitz. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1:255–266.

    Article  PubMed  CAS  Google Scholar 

  • Purugganan, M.D. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol. 45:392–396.

    Article  PubMed  CAS  Google Scholar 

  • Purugganan, M.D. 1998. The molecular evolution of development. Bioessays 20:700–711.

    Article  PubMed  CAS  Google Scholar 

  • Purugganan, M.D. 2000 The molecular population genetics of regulatory genes. Mol. Ecol. 9:1451–1461.

    Article  PubMed  CAS  Google Scholar 

  • Purugganan, M.D., S.D. Rounsley, R.J. Schmidt, and M. Yanofsky. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356.

    PubMed  CAS  Google Scholar 

  • Qiu, Y.L., J. Lee, F. Bernasconi-Quadroni, D.E. Soltis, P.S. Soltis, M. Zain, E.A. Zimmer, Z. Chen, V. Savolainen, and M.W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, J., R. Franzen, T. Ngyuen, F. Garcia-Maroto, C. Pozzi, F. Salamini, and W. Rohde. 2000. Cloning, mapping and expression analysis of six barley MADS-box genes. Plant Mol. Biol. 42:899–913.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, K.A. and M.D. Purugganan. 2002. The genetics of plant morphological evolution. Curr. Opin. Plant Biol. 5:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Shore, P. and A.D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Skipper, M., K.B. Pedersen, L.B. Johansen, S. Frederiksen, V.F. Irish, and B.B. Johansen. 2005. Identification and quantification of expression levels of three FRUITFULL-like MADS-box genes from the orchid Dendrobium thyrsiflorum (Reichb. f). Plant Sci. 169:579–586.

    Article  CAS  Google Scholar 

  • Soltis, P.S., D.E. Soltis, and M.W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404.

    Article  PubMed  CAS  Google Scholar 

  • Sung, S.K., G.H. Yu, and G. An. 1999. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol. 120:969–978.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L. 2000. PAUP: Phylogenetic analysis using persimony (and other methods). Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Tamura, M.N., J. Yamashita, S. Fuse, and M. Haraguchi. 2004. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J. Plant Res. 117:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Theissen, G., A. Becker, A. Di Rosa, A. Kanno, J.T. Kim, T. Münster, K.U. Winter, and H. Saedler. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115–149.

    Article  PubMed  CAS  Google Scholar 

  • Theissen, G., A. Becker, K.U. Winter, T. Münster, C. Kirchner, and H. Saedler. 2002. How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Cronk QCB, Bateman RM, Hawkins JA (eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, p. 173–205.

    Google Scholar 

  • Theissen, G., J.T. Kim, and H. Saedler. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43:484–516.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis, B., D.J. Bagnall, M.H. Ellis, W.J. Peacock, and E.S. Dennis. 2003. MADS box genes control vernalization-induced flowering in cereals. Proc. Natl. Acad. Sci. USA 100:13099–13104.

    Article  PubMed  CAS  Google Scholar 

  • Tsaftaris, A.S., K. Pasentsis, I. Iliopoulos, and A.N. Polidoros. 2004. Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci. 166:1235–1243.

    Article  CAS  Google Scholar 

  • Vahala, T., B. Oxelman, and S. von Arnold. 2001. Two APETALA2-like genes of Picea abies are differentially expressing during development. J. Exp. Bot. 52:1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche, M., G. Theissen, Y. van de Peer, and T. Gerats. 2003. Structual diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acid Res. 31:4401–4409.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D. and E.M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky, S., M. Rodriguez-Concepcion, K. Bracha, G. Toledo-Ortiz, and W. Gruissem. 2000. Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell 12:1257–1266.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., A. Loukoianov, G. Tranquilli, M. Helguera, T. Fahima, and J. Dubcovsky. 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100:6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., L. Fanning, and T. Jack. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity protein APETALA3 and PISTILLATA. Plant J. 33:47–59.

    Article  PubMed  Google Scholar 

  • Yang, Y. and T. Jack. 2004. Defining subdomains of the K domain important for protein-protein interactions of plant MADS protein. Plant Mol. Biol. 55:45–59.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H. and C.J. Goh. 2000. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123:1325–1336.

    Article  PubMed  CAS  Google Scholar 

  • Yun, P.Y., T. Ito, S.Y. Kim, A. Kanno, and T. Kameya. 2004a. AVAG1 gene is involved in the development of reproductive organs in ornamental asparagus, Asparagus virgatus. Sex. Plant Reprod. 17:1–8.

    Article  CAS  Google Scholar 

  • Yun, P.Y., S.Y. Kim, T. Ochiai, T. Fukuda, T. Ito, A. Kanno, and T. Kameya. 2004b. AVAG2 is a putative D-class gene from an ornamental asparagus. Sex. Plant Reprod. 17:107–116.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Kanno or Hyo-Yeon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, IJ., Fukuda, T., Ko, SM. et al. Expression analysis of an APETALA1/FRUITFULL-like gene in Phalaenopsis sp. ‘Hatsuyuki’ (Orchidaceae). Hortic. Environ. Biotechnol. 52, 183–195 (2011). https://doi.org/10.1007/s13580-011-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-011-0199-0

Additional key words

Navigation