Skip to main content
Log in

Manipulation of inositol metabolism for improved plant survival under stress: a “network engineering approach”

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Emergence of high-throughput sequencing tools and omics technologies paved the way for systems biology in last decade. While we have started to look at the biology of the plant in a more unified manner, the integration of such knowledge in agricultural biotechnology has become an arena of potential interest. The network of several central molecules operating in various life and developmental processes are now more adequately known, and fine tuning of such molecule pools, if connected to stress response, can result in enhanced stress tolerance of plants.This review interprets the potential of manipulation of myo-inositol and its derivatives in generation of transgenic crop plants. Being a molecule of central importance in plant life, inositol is connected to numerous life processes. The exploration of such pathways indicates that inositol itself and many of its derivatives can impart abiotic stress tolerance (against salinity, dehydration, chilling or oxidative stress) to plants when overexpressed. We propose that engineering inositol metabolic network is a potential approach towards stress-tolerant transgenic crop plant generation and thus its exploitation in agricultural biotechnology is the call of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn C, Park U, Park PB (2011) Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 415(4):669–74

    Article  PubMed  CAS  Google Scholar 

  • Anderson BP, Fehr WR (2008) Seed source affects field emergence of low-phytate soybean lines. Crop Sci 48:929–932

    Article  Google Scholar 

  • Blöchl A, de March GG, Sourdioux M, Peterbauer T, Richter A (2005) Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L.). Plant Sci 168:1075–1082

    Article  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  • Chatterjee J, Majumder AL (2010) Salt-induced abnormalities on root tip mitotic cells of Allium cepa: prevention by inositol pretreatment. Protoplasma 245(1–4):165–72

    Article  PubMed  CAS  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit Rev Food Sci Nutr 13:297–335

    Article  CAS  Google Scholar 

  • Cho YH, Yoo SD (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7(1):e1001263

    Article  PubMed  CAS  Google Scholar 

  • Couée C, Sulmon G, Gouesbet A, Amrani E (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci 77:878–881

    CAS  Google Scholar 

  • Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE (2010) The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. Plant Cell 22:888–903

    Article  PubMed  CAS  Google Scholar 

  • Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myo-inositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Ghosh Dastidar K, Maitra S, Goswami L, Roy D, Das KP, Majumder AL (2006) An insight into the molecular basis of salt tolerance of l-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol 140:1279–1296

    Article  PubMed  Google Scholar 

  • Goswami L, Sengupta S, Mukherjee S, Mukherjee R, Ray S, Majumder AL, unpublished Data from the Group

  • Harland BF, Morris ER (1995) Phytate: a good or a bad food component? Nutr Res 15:733–754

    Article  CAS  Google Scholar 

  • Irvine RF (2005) Inositide evolution – towards turtle domination? J Physiol 566:295–300

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RC, Bohnert HJ (1996) Coordinate transcriptional induction of myo -inositol metabolism during environmental stress. Plant J 9:537–548

    Article  PubMed  CAS  Google Scholar 

  • Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R (2005) The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221(2):243–54

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Shukla RK, Yadav G, Chattopadhyay D, Majee M (2008) Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant Cell Environ 31(11):1701–16

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Cho SM, Kang EY, Im YJ, Hwangbo H, Kim YC, Ryu CM, Yang KY, Chung GC, Cho BH (2008) Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol Plant–Microbe Interact 21(12):1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Klinghammer M, Tenhaken R (2007) Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J Exp Bot 58(13):3609–21

    Article  PubMed  CAS  Google Scholar 

  • Kuwano M, Takaiwa F, Yoshida KT (2009) Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles. Plant Cell Physiol 50(7):1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Liu QL, Xu XH, Ren XL, Fu HW, Wu DX, Shu QY (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA, Murthy PPN (2000) Myo- inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Lofke C, Ischebeck T, Konig S, Freitag S, Heilmann I (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 413:115–124

    Article  PubMed  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Majee M, Maitra S, Ghosh Dastidar K, Pattnaik S, Chatterjee A, Hait N, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol 1- phosphate synthase from Porteresia coarctata Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salt-tolerance phenotype. J Biol Chem 279(27):28539–28552

    Article  PubMed  CAS  Google Scholar 

  • Majumder AL, Chatterjee A, Ghosh Dastidar K, Majee M (2003) Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett 553(1):3–10

    Article  PubMed  CAS  Google Scholar 

  • Meis SJ, Fehr WR, Schnebly SR (2003) Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci 43:1336–1339

    Article  Google Scholar 

  • Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56:638–652

    Article  PubMed  CAS  Google Scholar 

  • Pandee P, Summpunn P, Wiyakrutta S, Isarangkul D, Meevootisom V (2011) A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J Microbiol 49(2):257–64

    Article  PubMed  CAS  Google Scholar 

  • Patra B, Ray S, Richter A, Majumder AL (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245(1–4):143–52

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J Expt Bot 40:1093–1098

    Article  CAS  Google Scholar 

  • Pen J et al (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilisation. Biotechnology 11:811–814

    Article  CAS  Google Scholar 

  • Pendaries C, Tronchere H, Racaud-Sultan C, Gaits-lacovoni F, Coronas S, Manenti S, Gratacap WP, Plantavid M, Payrastre B (2005) Emerging roles of phos- phatidylinositol monophosphates in cellular signaling and trafficking. Adv Enzyme Regul 45:201–214

    Article  PubMed  CAS  Google Scholar 

  • Peterbauer T, Lahuta LB, Blöchl A, Mucha J, Jones DA, Hedley CL, Gòrecki RJ, Richter A (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol 127(4):1764–72

    Article  PubMed  CAS  Google Scholar 

  • Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125

    Article  CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124(1):355–368

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Patra B, Das-Chatterjee A, Ganguli A, Majumder AL (2010) Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata. Planta 231(5):1211–27

    Article  PubMed  CAS  Google Scholar 

  • Saravitz DM, Pharr DM, Carter TE (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiol 83(1):185–9

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Keller F (2009) Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. Plant Cell Physiol 50:2174–2182

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31(10):1442–59

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Mukherjee S, Parween S and Majumder AL (2012) Galactinol synthase across evolutionary diverse taxa: Functional preference for higher plants? FEBS Lett 586:1488–1496

    Google Scholar 

  • Sharples SC, Fry SC (2007) Radioisotope ratios discriminate between competing pathways of cell wall polysaccharide and RNA biosynthesis in living plant cells. Plant J 52:252–262

    Article  PubMed  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by d-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed  CAS  Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Flores S (1997) Overexpression of D-myo-inositol-3-phosphate synthase leads to elevated levels of inositol in Arabidopis. Plant Mol Biol 33:811–820

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphos- phate kinases. Proc Natl Acad Sci USA 102:12612–12617

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29(4):417–26

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–5

    Article  PubMed  CAS  Google Scholar 

  • Timmerman BN, Steelink C and Loewus FA (Eds) (1983) Phytochemical adaptations to stress, recent advances in phytochemistry, vol. 18, Plenum Press, New York

  • Torabinejad J, Gillaspy GE (2006) Functional genomics of inositol metabolism. Subcell Biochem 39:47–70

    Article  PubMed  Google Scholar 

  • Valluru R, Van den Ende W (2011) Myo-inositol and beyond – Emerging networks under stress. Plant Sci 181:387–400

    Article  PubMed  CAS  Google Scholar 

  • van-Etten RL (1982) Humanprostaticacid phosphatase: a histidine phosphatase. Ann New York Acad Sci 390:27–51

    Article  CAS  Google Scholar 

  • Viader-Salvadó JM, Gallegos-López JA, Carreón-Treviño JG, Castillo-Galván M, Rojo-Domínguez A, Guerrero-Olazarán M (2010) Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl Environ Microbiol 76(19):6423–30

    Article  PubMed  Google Scholar 

  • Wada T, Maeda E (1980) A cytological study on the phosphorus accumulating tissues in the Gramineous seeds. Jpn J Crop Sci 49:475–481

    Article  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    PubMed  CAS  Google Scholar 

  • Wang W, Yang X, Tangchiaburana S, Ndeh R, Markham JE, Tseqaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–3179

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Pasamontes L, Rémy R, Kohler J, Kusznir E, Gadient M, Müller F, van Loon APGM (1998) Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and a A. niger pH 2.5 acid phosphatase. Appl Environ Microbiol 64:4446–4451

    PubMed  CAS  Google Scholar 

  • Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of transcript of myo-inositol-1-phosphate synthase and phytin- containing particles during seed development in rice. Plant Physiol 119:65–72

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Kornegay ET, Radcliffe JS, Wilson JH, Veit HP (2000) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J Anim Sci 78:2868–2878

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory have been supported by grants (to ALM) from the Department of Biotechnology and the Department of Atomic Energy, Govt of India. ALM is a Raja Ramanna Fellow (Department of Atomic Energy, India). SM is a Senior Research Fellow (Council of Scientific and Industrial Research). SSG is a Staff Scientist of a DBT supported project. LG, RM, SS, AM and NR are supported by Department of Biotechnology, India. PB is a Junior Research Fellow under DAE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonali Sengupta or Arun Lahiri Majumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, S., Mukherjee, S., Goswami, L. et al. Manipulation of inositol metabolism for improved plant survival under stress: a “network engineering approach”. J. Plant Biochem. Biotechnol. 21 (Suppl 1), 15–23 (2012). https://doi.org/10.1007/s13562-012-0132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0132-3

Keywords

Navigation