Skip to main content
Log in

A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andlid, T.A., J. Veide, and A.S. Sandberg. 2004. Metabolism of extracellular inositol hexaphosphate (phytase) by Saccharomyces cerevisiae. Int. J. Food Microbiol. 97, 157–169.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, A. and G. Walsh. 2007. Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. J. Biotechnol. 132, 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Breathnach, R., C. Benoist, K. O’Hare, F. Gannon, and P. Chambon. 1978. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA 75, 4853–4857.

    Article  PubMed  CAS  Google Scholar 

  • Chantasartrasamee, K., D. Israngkul, S. Intarareugsorn, and S. Dharmsthiti. 2005. Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium. Proc. Biochem. 40, 2285–2289.

    Article  CAS  Google Scholar 

  • Dvoráková, J., O. Volfová, and J. Kopecky. 1997. Characterization of phytase produced by Aspergillus niger. Folia Microbiol. 42, 349–352.

    Article  Google Scholar 

  • Engelen, A.J., F.C. van der Heeft, P.H.G. Randsdorp, and E.L.C. Smit. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77, 760–764.

    PubMed  CAS  Google Scholar 

  • Gargova, S. and M. Sariyska. 2003. Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase. Enzym. Microb. Technol. 32, 231–235.

    Article  CAS  Google Scholar 

  • Graf, E. 1983. Calcium binding to phytic acid. J. Agric. Food Chem. 31, 851–855.

    Article  CAS  Google Scholar 

  • Lee, J., Y. Choi, P.C. Lee, S. Kang, J. Bok, and J. Cho. 2007. Recombinant production of Penicillium oxalicum PJ3 phytase in Pichia pastoris. World J. Microbiol. Biotechnol. 23, 443–446.

    Article  CAS  Google Scholar 

  • Lei, X., P.K. Ku, E.R. Miller, D.E. Ullrey, and M.T. Yokoyama. 1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123, 1117–1123.

    PubMed  CAS  Google Scholar 

  • Mitchell, D.B., K. Vogel, B.J. Weimann, L. Pasamontes, and A.P. van Loon. 1997. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiol. 143, 245–252.

    Article  CAS  Google Scholar 

  • Möller, E.M., G. Bahnweg, H. Sandermann, and H.H. Geiger. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 20, 6115–6116.

    Article  PubMed  Google Scholar 

  • Nakamura, Y., H. Fukuhara, and K. Sano. 2000. Secreted phytase activities of yeast. Biosci. Biotechnol. Biochem. 64, 841–844.

    Article  PubMed  CAS  Google Scholar 

  • Oh, B.C., W.C. Choi, S. Park, Y.O. Kim, and T.K. Oh. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol. 63, 362–372.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, A., G. Szakacs, C.R. Soccol, J.A. Rodriguez-Leon, and V.T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresour. Technol. 77, 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and A.P.G.M. van Loon. 1997. Gene cloning, purification, and characterization of a heat stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63, 1696–1700.

    PubMed  CAS  Google Scholar 

  • Ragon, M., V. Neugnot-Roux, P. Chemardin, G. Moulin, and H. Boze. 2008. Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr. Purif. 58, 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, N.L., S.K. Sathe, and D.K. Salunkhe. 1982. Phytates in legumes and cereals. Adv. Food Res. 28, 1–92.

    PubMed  CAS  Google Scholar 

  • Rodriguez, E., E.J. Mullaney, and X.G. Lei. 2000. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem. Biophys. Res. Commun. 268, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, E., J.M. Porres, Y.M. Han, and X.G. Lei. 1999. Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365, 262–267.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J. and D.W. Russell. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, New York, NY, USA.

    Google Scholar 

  • Sariyska, M.V., S.A. Gargova, L.A. Koleva, and A.I. Angelov. 2005. Aspergillus niger phytase: Purification and characterization. Biotechnol. Biotechnol. Eq. 19, 98–105.

    CAS  Google Scholar 

  • Singh, B. and T. Satyanarayana. 2009. Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour. Technol. 100, 2046–2051.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, Y.H., T.J. Fang, and S.M. Tseng. 2000. Isolation and characterization of novel phytase from Penicillium simplicissimum. Folia Microbiol. 45, 121–127.

    Article  CAS  Google Scholar 

  • Uchida, H., S. Arakida, T. Sakamoto, and H. Kawasaki. 2006. Express of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD . J. Biosci. Bioeng. 102, 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Ullah, A.H.J., B.J. Cummins, and H.C. Dischinger. 1991. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytases. Biochem. Biophys. Res. Commun. 178, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Ullah, A.H.J. and D.M. Gibson. 1987. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: Purification and characterization. Prep. Biochem. 17, 63–91.

    Article  PubMed  CAS  Google Scholar 

  • Ullah, A.H.J., K. Sethumadhavan, X.G. Lei, and E.J. Mullaney. 2000. Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Biochem. Biophys. Res. Commun. 275, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., X. Gao, Q. Su, W. Wu, and L. An. 2007. Cloning, expression, and enzyme characterization of an acid heat-stable phytase from Aspergillus fumigatus WY-2. Curr. Microbiol. 55, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., S. Upatham, W. Panbangred, D. Isarangkul, P. Summpunn, S. Wiyakrutta, and V. Meevootisom. 2004. Purification, characterization, gene cloning and sequence analysis of a phytase from Klebsiella pneumoniae subsp. pneumoniae XY-5. Sci. Asia 30, 383–390.

    Article  CAS  Google Scholar 

  • Worthington, T.M. 1982. Enzymes and related biochemicals. Biochemical Products Division. Worthington Diagnostic System Inc. Freehold, New Jersey, USA.

    Google Scholar 

  • Wyss, M., L. Pasamontes, A. Friedlein, R. Rémy, M. Tessier, A. Kronenberger, A. Middendorf, M. Lehmann, L. Schnoebelen, U. Rothlisberger, E. Kusznir, G. Wahl, F. Muller, H.W. Lahm, K. Vogel, and A.P.G.M van Loon. 1999. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65, 359–366.

    PubMed  CAS  Google Scholar 

  • Wyss, M., L. Pasamontes, R. Rémy, J. Kohler, E. Kusznir, M. Gadient, F. Muller, and A.P.G.M van Loon. 1998. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64, 4446–4451.

    PubMed  CAS  Google Scholar 

  • Xiong, A.S., Q.H. Yao, R.H. Peng, X. Li, H.Q. Fan, M.J. Guo, and S.L. Zhang. 2004. Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J. Biochem. Mol. Biol. 37, 282–291.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D.M., M. Wang, X.J. Mu, M.L. Sun, and X.Y. Wang. 2007. Screening, cloning and overexpression of Aspergillus niger phytase (phyA) in Pichia pastoris with favourable characteristics. Lett. Appl. Microbiol. 45, 522–528.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithaya Meevootisom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandee, P., Summpunn, P., Wiyakrutta, S. et al. A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris . J Microbiol. 49, 257–264 (2011). https://doi.org/10.1007/s12275-011-0369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0369-x

Keywords

Navigation