Skip to main content
Log in

Toxicity evaluation of chlorpyrifos and diuron below maximum residue limits in rabbits

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objectives

This study investigated the toxicological aspects of chlorpyrifos and diuron concentrations below maximum residue limit (MRL) in rabbits, determined their residues associated with the toxicological aspects and modeled the toxicity.

Methods

Single- and repeated-dose toxicity tests were employed using white rabbits as experimental animals. In both toxicity tests, rabbit responses were evaluated by monitoring their body weight, various growth factors, activity of acetylcholinesterase (AChE), and activities of liver enzymes, alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Various kidney functions (urea, uric acid, creatinine and total protein concentration) were evaluated. Pesticide residues were also determined by GC.

Results

Repeated-dose toxicity test of chlorpyrifos and diuron significantly reduced the body, liver and heart weights compared with those of the control group (p = 0.045). Both tests reduced the serum AChE, AST and ALT activities and increased ALP activity. On the other hand, the tested compounds increased the uric acid and urea concentrations and reduced the creatinine concentration in the blood serum. Chlorpyrifos was detected in blood, kidney and manure samples whereas diuron was detected in liver tissues and blood samples.

Conclusions

Concentrations of chlorpyrifos and diuron far below MRL values generated various toxic effects in rabbits, indicating a possible health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LD50:

Lethal dose required to kill 50% of tested organisms

MRL:

Maximum residue limit

ALP:

Alkaline phosphatase

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

AChE:

Acetylcholinesterase

EDTA:

Ethylenediaminetetraacetic acid

IUPAC:

International Union of Pure and Applied Chemistry

OECD:

Organization for Economic Co-operation and Development

References

  1. El-Nahhal Y, Radwan A (2013) Human health risks: impact of pesticide application. J Environ Earth Sci 3:199–209

    Google Scholar 

  2. Mebdoua S, Lazali M, Ounane SM, Tellah S, Nabi F, Ounane G (2017) Evaluation of pesticide residues in fruits and vegetables from Algeria. Food Addit Contam Part B Surveill 10:91–98

    Article  CAS  PubMed  Google Scholar 

  3. Field JA, Reed RL, Sawyer TE, Griffith SM, Wigington PJ Jr (2003) Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production. J Environ Qual 32:171–179

    Article  CAS  PubMed  Google Scholar 

  4. Gómez-Pérez ML, Romero-González R, Martínez-Vidal JL, Garrido-Frenich A (2015) Analysis of veterinary drug and pesticide residues in animal feed by high-resolution mass spectrometry: comparison between time-of-flight and Orbitrap. Food Addit Contam A 32:1637–1646

    Article  CAS  Google Scholar 

  5. Prichard T, Troiano J, Marade J, Guo F, Canevari M (2005) Movement of diuron and hexazinone in clay soil and infiltrated pond water. J Environ Qual 34:2005–2017

    Article  CAS  PubMed  Google Scholar 

  6. Lamoree MH, Swart CP, van der Horst A, van Hattum B (2002) Determination of diuron and the antifouling paint biocide irgarol 1051 in dutch marinas and coastal waters. J Chromatogr A 970:183–190

    Article  CAS  PubMed  Google Scholar 

  7. Okamura H, Aoyama I, Ono Y, Nishida T (2003) Antifouling herbicides in the coastal waters of western Japan. Mar Pollut Bull 47:59–67

    Article  CAS  PubMed  Google Scholar 

  8. Commission of the European Communities (2000) Communication on the Precautionary Principle, Brussels. http://europa.eu.int/comm/off/com/health~consumer/precaution.htm. Accessed 02 Feb 2000

  9. U.S. Environmental Protection Agency (2005) Fact sheet: the drinking water contaminant candidate list—the source of priority contaminants for the drinking water program. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  10. WHO-World Health Organization/International Programme on Chemical Safety (2005) Chemical specific adjustment factors for interspecies differences and human variability: guidance document for use of data in dose/concentration-response assessment. World Health Organization, Geneva

    Google Scholar 

  11. Kaklamanos G, Vincent U, von Holst C (2013) Analysis of antimicrobial agents in pig feed by liquid chromatography coupled to orbitrap mass spectrometry. J Chromatogr A 1293:60–74

    Article  CAS  Google Scholar 

  12. Guo X, Chen X, Zhang H, Long X, He Q, Sun C, Huang X, He J (2015) The rabbit experimental study for toxicokinetics of chlorpyrifos impacted by hemoperfusion. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 33:844–846

    CAS  PubMed  Google Scholar 

  13. Zafiropoulos A, Tsarouhas K, Tsitsimpikou C, Fragkiadaki P, Germanakis I, Tsardi M, Maravgakis G, Goutzourelas N, Vasilaki F, Kouretas D, Hayes WA, Tsatsakis MA (2014) Cardiotoxicity in rabbits after a low-level exposure to diazinon, propoxur, and chlorpyrifos. Hum Exp Toxicol 33:1241–1252

    Article  CAS  PubMed  Google Scholar 

  14. Maravgakis G, Tzatzarakis MN, Alegakis AK, Stivaktakis PD, Tsatsakis AM (2012) Diethyl phosphates accumulation in rabbits’ hair as an indicator of long term exposure to diazinon and chlorpyrifos. Forensic Sci Int 218:106–110

    Article  CAS  PubMed  Google Scholar 

  15. Cetin N, Cetin E, Eraslan G, Bilgili A (2007) Chlorpyrifos induces cardiac dysfunction in rabbits. Res Vet Sci 82:405–408

    Article  CAS  PubMed  Google Scholar 

  16. Bassey YI, Benjamin UE, Iso AN, Samuel AP, Bassey PE, George AU (2014) Nephrotoxicity of ridomil and chlorpyriphos: a preliminary investigation of pesticides interaction. Toxicol Environ Health Sci 6(2):55–60

    Article  Google Scholar 

  17. Akhtar N, Srivastava KM, Raizada BR (2009) Assessment of chlorpyrifos toxicity on certain organs in rat, Rattus norvegicus. J Environ Biol 30:1047–1053

    CAS  PubMed  Google Scholar 

  18. El-Nahhal Y (2017) Acute poisoning among farmers by chlorpyrifos: case report from Gaza Strip. Occup Dis Environ Med 5:47–57

    Article  Google Scholar 

  19. Robert H, Hill-Rollenn JZ, Kimbrough DR, Groce FD, Needham LL (1981) Tetrachloroazobenzene in 3,4-dichloroaniline and its herbicidal derivatives: propanil, diuron, linuron, and neburon. Arch Environ Health Int J 36:11–14

    Article  Google Scholar 

  20. Sharma P, Sablok K, Bhalla V, Suri RC (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide diuron. Biosen Bioelectron 26:4209–4212

    Article  CAS  Google Scholar 

  21. Abass KH, Reponen P, Turpeinen M, Jalonen J, Pelkonen O (2007) Characterization of diuron N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450 enzymes. Drug Metabol Dispos 35:1634–1641

    Article  CAS  Google Scholar 

  22. Lee D, Eom H, Kim M, Jung J, Rhee J (2017) non-target effects of antifouling agents on mortality, hatching success, and acetylcholinesterase activity in the brine shrimp Artemia salina. Toxicol Environ Health Sci 9(3):237–243

    Article  Google Scholar 

  23. Australian Pesticides and Veterinary Medicines Authority (2019) Acute reference doses (ARfD) for agricultural and veterinary chemicals used in food producing crops or animals edition 2, 2019 current as of 30 June 2019. Kingston Act 2604 Australia

  24. Van Pelt CS, Hoffman K (1993) Supplement to diuron chronic toxicity to dogs after oral administration (12-month feeding study). Bayer Ag, Institute for Toxicology, Wuppertal-Elberfeld, Germany. Report no: DIUR/TOX 10

  25. Kumar SK, Han T (2011) toxicity of single and combined herbicides on PSII maximum efficiency of an aquatic higher plant, Lemna sp. Toxicol Environ Health Sci 3(2):97–105

    Article  Google Scholar 

  26. El-Nahhal Y (2016) Biochemical changes associated with long term exposure to pesticide among farmers in the Gaza Strip. Occup Dis Environ Med. https://doi.org/10.4236/odem.2016.43009

    Article  Google Scholar 

  27. El-Nahhal Y (2018) Toxicity of some aquatic pollutants to fish. Environ Monit Assess 190(8):449. https://doi.org/10.1007/s10661-018-6830-0

    Article  CAS  PubMed  Google Scholar 

  28. El-Nahhal Y, Lubbad R (2018) Acute and single repeated dose effects of low concentrations of chlorpyrifos, diuron, and their combination on chicken. Environ Sci Pollut Res 25:10837–10847

    Article  CAS  Google Scholar 

  29. Codex Alimentarius Pesticide Residues in Food and Feed (2015). http://www.codexalimentarius.net/pestres/data/pesticides/details.html?id=17. Accessed 25 Oct 2018

  30. Rückstands-Höchstmengenverordnung (2006) German residue limit order, in the version of publication from Oct 21, 1999 BGBl. German Federal Act-I, pp 2082–2158

  31. Bosze Z, Houdebine LM (2006) Application of rabbits in biomedical research: a review. World Rabbit Sci 14:1–14

    Google Scholar 

  32. Aly N, El-Gendy K (2015) Impact of parathion exposure on some biochemical parameters in rabbit as a non target organism. Alex J Med 51:11–17

    Article  Google Scholar 

  33. Al malihi KhB (2016) Hepatic and renal toxicity of dichlorvos in male domestic rabbits. MSc thesis, The Islamic University Gaza

  34. Oloyede OB, Sunmonu TO (2008) Decrease in activities of selected rat liver enzymes following consumption of chemical effluent. J Appl Sci Environ Manag 12:95–100

    Google Scholar 

  35. Abolaji AO, Awogbindin IO, Adedara IA, Farombi EO (2017) Insecticide chlorpyrifos and fungicide carbendazim, common food contaminants mixture, induce hepatic, renal, and splenic oxidative damage in female rats. Hum Exp Toxicol 36:483–493

    Article  CAS  PubMed  Google Scholar 

  36. Walz I, Schwack W (2007) Multienzyme inhibition assay for residue analysis of insecticidal organophosphates and carbamates. J Agric Food Chem 55:10563–10571

    Article  CAS  PubMed  Google Scholar 

  37. Sanjeev S, Bidanchi MR, Murthy KM, Gurusubramanian G, Roy KV (2019) Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ Sci Pollut Res 26:20631–20653

    Article  CAS  Google Scholar 

  38. Ivey CM, Mann DH, Oehier DD, Claborrn VH, Eschle LJ, Hocan FD (1972) Chlorpyrifos and Its oxygen analogue: residues in the body tissues of dipped cattle. J Econ Entomol 65:1647–1649

    Article  CAS  PubMed  Google Scholar 

  39. Hamamoto K, Iwatsuki K, Akama R, Koike R (2017) Rapid multi-residue determination of pesticides in livestock muscle and liver tissue via modified QuEChERS sample preparation and LC/MS/MS. Food Addit Contam A 34:1162–1171

    Article  CAS  Google Scholar 

  40. Fernandes ASG, Arena CA, Fernandez BDC, Mercadante A, Barbisan FL, Kempinas GW (2007) Reproductive effects in male rats exposed to diuron. Reprod Toxicol 23:106–112

    Article  CAS  PubMed  Google Scholar 

  41. Tomlin SC (2000) The pesticide manual, Twelfth edn. British Crop Protection Council, Surrey

    Google Scholar 

  42. Nir S, Undabeytia T, Yaron D, El-Nahhal Y, Polubesova T, Serban S, Rytwo G, Lagaly G, Rubin B (2000) Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: interaction between phenyl rings. Environ Sci Technol 34:1269–1274

    Article  CAS  Google Scholar 

  43. Domingues A, Grassi TF, Spinardi-Barbisan ALT, Barbisan LF (2012) Developmental exposure to diuron causes splenotoxicity in male Sprague-Dawley rat pups. J Environ Sci Health B 47:420–426

    Article  CAS  PubMed  Google Scholar 

  44. da Silva Simões M, Bracht L, Parizotto AV, Comar JF, Peralta RM, Bracht A (2017) The metabolic effects of diuron in the rat liver. Environ Toxicol Pharmacol 54:53–61

    Article  PubMed  CAS  Google Scholar 

  45. OECD Guideline for the Testing of Chemicals No. 414: Prenatal Developmental Toxicity Study. 2001

  46. Ellman GL, Courtney KD, Andres V Jr, Feather-Stont RM (1961) A new and rapid colorimetinc determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  47. Bessy DA, Lowry OH, Brock MI (1946) Determination in serum with p-nitrophenylphosphate. J Biol Chem 164:321–329

    Google Scholar 

  48. Reitman S, Frankel S (1957) A colorimetric method for determination of serum glutamate oxaloacetic acid and pyruvic acid transaminases. Am J Clin Pathol 29:56–63

    Article  Google Scholar 

  49. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonsnes RW, Taussky HH (1945) On the colorimetric determination of creatinine by the Jaffe reaction. J Biol Chem 158:581–591

    CAS  Google Scholar 

  51. Caraway WT (1955) Epidemiology of chronic rheumatism. Am J Clin Pathol 25:840–845

    Article  CAS  PubMed  Google Scholar 

  52. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  53. Safi JM, Abou-Foul NS, EL-Nahhal YZ, EL-Sebae A (2002) Monitoring of pesticide residues on cucumber, tomatoes and strawberries in Gaza Governorates, Palestine. Food 46:34–39

    CAS  PubMed  Google Scholar 

  54. Al-Kurdi S, Al-Louh MO, Al-Agha MR, El-Nahhal Y (2018) Development of analytical method for the detection of Nemacur residues in cucumber fruits. Am J Anal Chem 9:64–76

    Article  CAS  Google Scholar 

  55. El-Nahhal Y, Nir S, Polubesova T, Margulies L, Rubin B (1998) Leaching, phytotoxicity and weed control of new formulations of alachlor. J Agric Food Chem 46:3305–3313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to the Alexander von Humboldt Foundation for providing a Research Fellowship to Leipzig University and the BAM Institute Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser El-Nahhal.

Ethics declarations

Conflict of interest

Yasser El-Nahhal, Raaed Lubbad and Mohammad R. Al-Agha declare that we have no conflict of interest.

Ethical approval

Ethical approval for this study was obtained from the research committee of the Faculty of Science and the Faculty of Medicine at The Islamic University Gaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nahhal, Y., Lubbad, R. & Al-Agha, M.R. Toxicity evaluation of chlorpyrifos and diuron below maximum residue limits in rabbits. Toxicol. Environ. Health Sci. 12, 177–190 (2020). https://doi.org/10.1007/s13530-020-00015-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-020-00015-z

Keywords

Navigation