Skip to main content

Advertisement

Log in

Toxicity of some aquatic pollutants to fish

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pesticide residues threaten fish that live in rivers. This study investigated the effects of Nemacur, malathion, and diuron on freshwater fish behavior, mortality, acetylcholinesterase (ACHE) activity, liver biomarkers, and residue accumulation. Fish were exposed to individual concentration of Nemacur, malathion, and diuron at 1 mg/L and to binary mixtures in glass aquarium 16 L capacity. Mortality of fish was also investigated at a range of 0.0–1 mg/L of Nemacur and malathion. The biochemical effects of the tested compounds were recorded. The results showed abnormal fish behavior at low concentration (0.1 mg/L) of malathion, high fish mortality at 0.1 mg/L of Nemacur and mixtures with Nemacur, and no mortality with diuron. Mortality increased and became more intense after 48 h rather than after 24 h. Diuron increased the effect of Nemacur and malathion at low concentration. ACHE was inhibited at different percentages in the blood serum and brain homogenate due to exposure to Nemacur, malathion, diuron, and/or a combination of these pesticides. Liver biomarker levels were higher in the blood serum of the treated fish than the control group. The interesting outcome of the study is that Nemacur is several folds more toxic than malathion and diuron. Mixtures showed synergistic effects. The pesticide residues in the fish muscles were less than those in the water. It can be concluded that low concentrations of Nemacur, malathion, and diuron are negatively affecting fish in rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas, K., Reponen, P., Turpeinen, M., Jalonen, J., & Pelkonen, O. (2007). Characterization of diuron N-demethylation by mammalian hepatic microsomes and c-DNA expressed human cytochrome P450 enzymes. Drug Metabolism and Disposition, 35(9), 1634–1641. https://doi.org/10.1124/dmd.107.016295.

    Article  CAS  Google Scholar 

  • Agarwal, A., Prajapati, R., Singh, O. P., Raza, S. K., & Thakur, L. K. (2015). Pesticide residue in water—a challenging task in India. Environmental Monitoring and Assessment, 87(2), 54. https://doi.org/10.1007/s10661-015-4287-y.

    Article  CAS  Google Scholar 

  • Akoto, O., Azuure, A. A., & Adotey, K. D. (2016). Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications. SpringerPlus, 5(1), 1849 eCollection 2016.

    Article  CAS  Google Scholar 

  • Aktar, M. W., Paramasivam, M., Sengupta, D., Purkait, S., Ganguly, M., & Banerjee, S. (2009). Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environmental Monitoring and Assessment, 157(1–4), 97–104. https://doi.org/10.1007/s10661-008-0518-9.

    Article  CAS  Google Scholar 

  • Al-Kurdi, S., Al-Louh, M. O., Al-Agha, M. R., & El-Nahhal, Y. (2018). Development of analytical method for the detection of Nemacur residues in cucumber fruits. American Journal of Analytical Chemistry, 9(1), 64–76. https://doi.org/10.4236/ajac.2018.91006.

    Article  Google Scholar 

  • Alloh, M. O., AL-Kurdi, S., Alagha, M. R., & Yasser, E.-N. (2018). Nemacur residue analysis in soil water and cucumber samples collected from the field in Gaza Strip, Palestine. American Journal of Plant Sciences, 9, 517–530. https://doi.org/10.4236/ajps.2018.93039.

    Article  Google Scholar 

  • Amaraneni, S. R., & Pillala, R. R. (2001). Concentrations of pesticide residues in tissues of fish from Kolleru Lake in India. Environmental Toxicology, 16(6), 550–556.

    Article  CAS  Google Scholar 

  • Call, J. D., Brooke, T. L., Kent, J. R., Knuth, L. M., Poirier, H. S., Huot, M. J., & Lima, R. A. (1987). Bromacil and diuron herbicides: toxicity, uptake, and elimination in freshwater fish. Achieve of Environmental Contamination and Toxicology, 16(5), 607–613.

    Article  CAS  Google Scholar 

  • Ccanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., & Barceló, D. (2016). Pesticides in the Ebro River basin: occurrence and risk assessment. Environmental Pollution, 21, 414–424. https://doi.org/10.1016/j.envpol.2015.12.059.

    Article  CAS  Google Scholar 

  • Chatterjee, N. S., Banerjee, K., Utture, S., Kamble, N., Rao, B. M., Panda, S. K., & Mathew, S. (2016). Assessment of polyaromatic hydrocarbons and pesticide residues in domestic and imported pangasius (Pangasianodon hypophthalmus) fish in India. Journal of the Science of Food and Agriculture, 96(7), 2373–2377. https://doi.org/10.1002/jsfa.7352.

    Article  CAS  Google Scholar 

  • Cho, H. R., Park, J. S., Kim, J., Han, S. B., & Choi, Y. S. (2015). Multiresidue method for the quantitation of 20 pesticides in aquatic products. Analytical and Bioanalytical Chemistry, 407(30), 9043–9052. https://doi.org/10.1007/s00216-015-9071-x.

    Article  CAS  Google Scholar 

  • Cook, H. G., James, C., Moore, C. J., & Coppage, L. D. (1976). The relationship of malathion and its metabolites to fish poisoning. Bulletin of Envronmental Contamination and Toxlcology, 16(3), 283–290.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres Jr., V., & Feather-Stont, R. M. (1961). A new and rapid colorimetinc determination of acetylcholinesterase activity. Biochemistry and Pharmacology, 7, 88–95.

    Article  CAS  Google Scholar 

  • El-Nahhal, Y., & Lagaly, G. (2005). Salt effects on the adsorption of a pesticide on modified bentonite. Colloid and Polymer Science, 283(8), 968–974.

    Article  CAS  Google Scholar 

  • El-Nahhal, Y., & Safi, J. (2004). Adsorption behavior of phenanthrene on organoclays under different salinity levels. Journal of Colloid and Interface Science, 269, 265–273.

    Article  CAS  Google Scholar 

  • El-Nahhal Y.; Safi J. (2008) Removal of pesticide residues from water by organo-bentonites. Proc. The Twelfth International Water Technology Conference (pp. 1711–1724). Alexandria, Egypt.

  • El-Nahhal, Y., Nir, S., Polubesova, T., Margulies, L., & Rubin, B. (1998). Leaching, phytotoxicity and weed control of new formulations of alachlor. Journal of Agricultural and Food Chemistry, 46(8), 3305–3313.

    Article  CAS  Google Scholar 

  • El-Nahhal, Y., EL-dahdouh, N., Hamdona, N., & Alshanti, A. (2016). Toxicological data of some antibiotics and pesticides to fish, mosquitoes, cyanobacterial mats and to plants. Data in Brief, 6, 871–880. https://doi.org/10.1016/j.dib.2016.01.051.

    Article  Google Scholar 

  • El-Sayed, S. Y., Saad, T. T., & El-Bahr, M. S. (2007). Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environmental Toxicology and Pharmacology, 24(3), 212–217. https://doi.org/10.1016/j.etap.2007.05.006.

    Article  CAS  Google Scholar 

  • European Food Safety Authority. (2011). Review of the existing maximum residue levels (MRLs) for diuron according to article 12 of regulation (EC) No 396/2005. EFSA Journal, 9(7), 2324.

    Google Scholar 

  • Fadaei, A., Dehghani, M. H., Nasseri, S., Mahvi, A. H., Rastkari, N., & Shayeghi, M. (2012). Organophosphorous pesticides in surface water of Iran. Bulletin of Environmental Contamination and Toxicology, 88(6), 867–869. https://doi.org/10.1007/s00128-012-0568-0.

    Article  CAS  Google Scholar 

  • Fournier, M. L., Echeverría-Sáenz, S., Mena, F., Arias-Andrés, M., & de. La., Cruz, E., Ruepert, C. (2017). Risk assessment of agriculture impact on the Frío River watershed and Caño Negro Ramsar wetland, Costa Rica. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-016-8353-y.

    Article  CAS  Google Scholar 

  • Heeb, F., Singer, H., & Pernet-Coudrier, B. (2012). Organic micro-pollutants in rivers downstream of the megacity Beijing: sources and mass fluxes in a large-scale wastewater irrigation system. Environmental Science and Technology, 46(16), 8680–8688. https://doi.org/10.1021/es301912q.

    Article  CAS  Google Scholar 

  • Kid, P. R. N., & King, E. G. (1954). Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. Journal of Clinical Pathology, 7(4), 322–326. https://doi.org/10.1136/jcp.7.4.322.

    Article  Google Scholar 

  • Leong, K. H., Tan, L. L., & Mustafa, A. M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153–1159.

    Article  CAS  Google Scholar 

  • Li, H., Tyler Mehler, W., Lydy, M. J., & You, J. (2011). Occurrence and distribution of sediment-associated insecticides in urban waterways in the Pearl River Delta, China. Chemosphere, 82(10), 1373–1379. https://doi.org/10.1016/j.chemosphere.2010.11.074.

    Article  CAS  Google Scholar 

  • Malhat, F., & Nasr, I. (2011). Organophosphorus pesticides residues in fish samples from the River Nile tributaries in Egypt. Bulletin of Environmental Contamination and Toxicology, 87(6), 689–692. https://doi.org/10.1007/s00128-011-0419-4.

    Article  CAS  Google Scholar 

  • Marlatt, V. L., & Martyniuk, C. J. (2017). Biological responses to phenylurea herbicides in fish and amphibians: new directions for characterizing mechanisms of toxicity. Comparative Biochemistry and Physiology, Toxicology & Pharmacology, 194, 9–21. https://doi.org/10.1016/j.cbpc.2017.01.002.

    Article  CAS  Google Scholar 

  • Marques, A., Guilherme, S., Gaivão, I., Santos, M. A., & Pacheco, M. (2014). Progression of DNA damage induced by a glyphosate-based herbicide in fish (Anguilla anguilla) upon exposure and post-exposure periods—insights into the mechanisms of genotoxicity and DNA repair. Comparative Biochemistry and Physiology, Toxicology & Pharmacology, 166, 126–133. https://doi.org/10.1016/j.cbpc.2014.07.009.

    Article  CAS  Google Scholar 

  • Masiá, A., Campo, J., Navarro-Ortega, A., Barceló, D., & Picó, Y. (2015). Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. The Science of the Total Environment, 503-504, 58–68. https://doi.org/10.1016/j.scitotenv.2014.06.095.

    Article  CAS  Google Scholar 

  • Mhadhbi, L., Toumi, H., Boumaiza, M., & Aloui, N. (2012). Toxicity of three selected pesticides (alachlor, atrazine and diuron) to the marine fish (turbot Psetta maxima). African Journal of Biotechnology, 11(51), 11321–11328. https://doi.org/10.5897/AJB11.4096.

    Article  CAS  Google Scholar 

  • Newman, J. W., Denton, D. L., Morisseau, C., Koger, C. S., Wheelock, C. E., Hinton, D. E., & Hammock, B. D. (2001). Evaluation of fish models of soluble epoxide hydrolase inhibition. Environmental Health Perspectives, 109(1), 61–66.

    Article  CAS  Google Scholar 

  • OECD (1984). Procedures to verify the toxicity of the tested compounds and their mixtures. www.oecd.org/dataoecd/17/20/1948241.

  • Okamura, H., Watanabe, T., Aoyama, I., & Hasobe, M. (2002). Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere, 46(7), 945–951.

    Article  CAS  Google Scholar 

  • Olsvik, P. A., Berntssen, M. H., & Søfteland, L. (2017). In vitro toxicity of pirimiphos-methyl in Atlantic salmon hepatocytes. Toxicology In Vitro, 39, 1–14. https://doi.org/10.1016/j.tiv.2016.11.008.

    Article  CAS  Google Scholar 

  • Osfor, M. M., Abd el-Wahab, A. M., & el-Dessouki, S. A. (1998). Occurrence of pesticides in fish tissues, water and soil sediment from Manzala Lake and River Nile. Die Nahrung, 42(1), 39–41.

    Article  CAS  Google Scholar 

  • Qayoom, I., Shah, F. A., Mukhtar, M., Balkhi, M. H., Bhat, F. A., & Bhat, B. A. (2016). Dimethoate induced behavioural changes in juveniles of Cyprinus carpio var. communis under temperate conditions of Kashmir, India. Scientific World Journal. https://doi.org/10.1155/2016/4726126.

    Article  CAS  Google Scholar 

  • Reitman, S., & Frankel, S. (1957). A colorimetric method for determination of serum glutamate oxaloacetic acid and pyruvic acid transaminases. American Journal of Clinical Pathology, 29(1), 56–63. https://doi.org/10.1093/ajcp/28.1.56.

    Article  Google Scholar 

  • Safi, J., Abu Foul, N., El-Nahhal, Y., & El-Sebae, A. (2002). Monitoring of pesticide residues on cucumber, tomatoes and strawberries in Gaza Governorates, Palestine. Nahrung/Food, 46(1), 34–49. https://doi.org/10.1002/1521-3803(20020101)46:1<34::AID-FOOD34>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Safi, J., Awad, Y., & El-Nahhal, Y. (2014). Bioremediation of diuron in soil and by cyanobacterial mat. American Journal of Plant Sciences, 5(8), 1081–1089. https://doi.org/10.4236/ajps.2014.58120.

    Article  CAS  Google Scholar 

  • Said, T. O., El Moselhy, K. M., Rashad, A. A., & Shreadah, M. A. (2008). Organochlorine contaminants in water, sediment and fish of Lake Burullus, Egyptian Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 81(2), 136–146. https://doi.org/10.1007/s00128-008-9422-9.

    Article  CAS  Google Scholar 

  • Schuytema, S. G., & Nebeker, V. A. (1998). Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Archives of Environmental Contamination and Toxicology, 34(4), 370–376.

    Article  CAS  Google Scholar 

  • Singh, P. B., Sahu, V., Singh, V., Nigam, S. K., & Singh, H. K. (2008). Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India. Food and Chemical Toxicology, 46(12), 3764–3769. https://doi.org/10.1016/j.fct.2008.09.066.

    Article  CAS  Google Scholar 

  • Souza-Caldas, S., Marian-Bolzan, C., Jaime de Menezes, E., Laura Venquiaruti Escarrone, A., de Martinez, G. M. C., Bianchini, A., & Gilberto, P. E. (2013). A vortex-assisted MSPD method for the extraction of pesticide residues from fish liver and crab hepatopancreas with determination by GC-MS. Talanta, 112, 63–68. https://doi.org/10.1016/j.talanta.2013.03.054.

    Article  CAS  Google Scholar 

  • Sturm, A., Radau, T. S., Hahn, T., & Schulz, R. (2007). Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-associated organophosphorous insecticides. Chemosphere, 68(4), 605–612. https://doi.org/10.1016/j.chemosphere.2007.02.056.

    Article  CAS  Google Scholar 

  • Tixier, C., Sancelme, M., Ait-Aissa, S., Widehem, P., Bonnemoy, F., Cuer, A., Truffaut, N., & Veschambre, H. (2002). Biotransformation of phenylurea herbicidesby a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere, 46(4), 519–526. https://doi.org/10.1016/S0045-6535(01)00193-X.

    Article  CAS  Google Scholar 

  • Uner, N., Oruc, O. E., Sevgiler, Y., Sahin, N., Durmaz, H., & Usta, D. (2006). Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 21(3), 241–245. https://doi.org/10.1016/j.etap.2005.08.007.

    Article  CAS  Google Scholar 

  • USEPA (2003). Reregistration eligibility decision for diuron, list a, case 0046. In: USEPA (Ed.).

  • Velíšek, J., Jurčíková, J., Dobšíková, R., Svobodová, Z., Piačková, V., Máchová, J., & Novotný, L. (2007). Effects of deltamethrin on rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Pharmacology, 23(3), 297–301. https://doi.org/10.1016/j.etap.2006.11.006.

    Article  CAS  Google Scholar 

  • Venkateswara Rao, J. (2006). Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere, 65(10), 1814–1820. https://doi.org/10.1016/j.chemosphere.2006.04.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof Dr. El-Nahhal would like to thank the AvH-Foundation–Germany for funding several research stays at German universities. The author would like to acknowledge Prof Salama M Saadeh for the discussion, proofreading, and a review of this manuscript. Special thanks also go to the Hunaif laboratory team for helping with the biochemical analysis.

Author information

Authors and Affiliations

Authors

Contributions

YE did everything on the manuscript.

Corresponding author

Correspondence to Yasser El-Nahhal.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nahhal, Y. Toxicity of some aquatic pollutants to fish. Environ Monit Assess 190, 449 (2018). https://doi.org/10.1007/s10661-018-6830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6830-0

Keywords

Navigation