Skip to main content
Log in

Hexanal-induced changes in miRNA-mRNA interactions in A549 human alveolar epithelial cells

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Although hexanal is considered to be a major air pollutant the correlation between hexanal and health risk is largely unknown. Identifying aldehyde toxicity in eukaryotic cells will be useful for preventing and treating environmental diseases and disorders. However, it is important to note that previous microRNA (miRNA) studies of hexanal have not yet identified the functional relationship between miRNA and mRNA. The aim of this study is to investigate the modulation of the integrated miRNA-mRNA relationship following exposure to hexanal. A549 human alveolar epithelial cells were treated to a 20% inhibitory concentration (IC20) of hexanal for 48 h. The microarray analysis results showed that 6 miRNA were altered in the hexanal-exposed A549 cells. Integrated analysis of miRNA and mRNA expression profiles identified 445 miRNA-mRNA correlations. KEGG analysis of 445 putative target genes of hexanal-induced miRNAs indicated that 8 genes (ATP2B3, ATP2B4, CACNA1G, EDNRA, GRM5, ITPR2, ITPKB, PTGER3) are involved in the calcium signaling pathway, which plays an important role in Alzheimer’s and several inherited immunodeficiency diseases. Therefore, this study suggests the value of miRNA-mRNA networks in order to identify molecular regulation in response to hexanal exposure in an in vitro model. Furthermore, this approach provides insight into the potential biological process of toxicity and a better understanding of the toxicological mechanism of toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samet, J. M., Marbury, M. C. & Spengler, J. D. Health effects and sources of indoor air pollution. Part I. The Am. Rev. Respir. Dis. 136, 1486–1508 1987.

    Article  CAS  PubMed  Google Scholar 

  2. Baumann, M. G. D., Lorenz, L. F., Batterman, S. A. & Zhang, G. Z. Aldehyde emissions from particleboard and medium density fiberboard products. Forest. Prod. J. 50, 75–82 2000.

    CAS  Google Scholar 

  3. Nazaroff, W. W. & Weschler, C. J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmos. Environ. 38, 2841–2865 2004.

    Article  CAS  Google Scholar 

  4. O’Brien, P. J., Siraki, A. G. & Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Cr. Rev. Toxicol. 35, 609–662 2005.

    Article  Google Scholar 

  5. Poli, D. et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber- derivatisation SPME-GC/MS. J. Chromatogr. B, Analytical Technologies in the Biomedical and Life Sciences 878, 2643–2651 2010.

    Article  CAS  Google Scholar 

  6. Song, M. K. et al. Octanal-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in A549 human alveolar cells. Hum. Exp. Toxicol. 33, 710–721 2013.

    Article  PubMed  Google Scholar 

  7. Ernstgard, L., Iregren, A., Sjogren, B., Svedberg, U. & Johanson, G. Acute effects of exposure to hexanal vapors in humans. JOEM 48, 573–580 2006.

    PubMed  Google Scholar 

  8. Mraz, M. & Pospisilova, S. MicroRNAs in chronic lymphocytic leukemia: From causality to associations and back. Expert Rev. Hematol. 5, 579–581 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, A. M., Byrom, M. W., Shelton, J. & Ford, L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 103, 12481–12486 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. An, Y. R. & Hwang, S. Y. Toxicology study with microRNA. Mol. Cell. Toxicol. 10, 127–134 2014.

    Article  CAS  Google Scholar 

  15. Fukushima, T., Hamada, Y., Yamada, H. & Horii, I. Changes of micro-RNA expression in rat liver treated by acetaminophen or carbon tetrachloride—regulating role of micro-RNA for RNA expression. J. Toxicol. Sci. 32, 401–409 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Hudder, A. & Novak, R. F. miRNAs: Effectors of environmental influences on gene expression and disease. Toxicol. Sci.: An Official Journal of the Society of Toxicology 103, 228–240 2008.

    Article  CAS  Google Scholar 

  17. Cho, Y., Song, M. K., Choi, H. S. & Ryu, J. C. Analysis of dose-response to hexanal-induced gene expression in A549 human alveolar cells. BioChip J. 8, 75–82 2014.

    Article  CAS  Google Scholar 

  18. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Huang, J. C. et al. Using expression profiling data to identify human microRNA targets. Nature Methods 4, 1045–1049 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Song, M. K. et al. Analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the MAPK pathway under octanal exposure. Environ. Toxicol. Pharmacol. 37, 84–94 2014.

    Article  CAS  PubMed  Google Scholar 

  21. Feltens, R. et al. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro. Toxicol. Appl. Pharm. 242, 100–108 2010.

    Article  CAS  Google Scholar 

  22. Koehler, C. et al. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium. Toxicol. Appl. Pharm. 245, 219–225 2010.

    Article  CAS  Google Scholar 

  23. Roggen, E. L., Soni, N. K. & Verheyen, G. R. Respiratory immunotoxicity: An in vitro assessment. Toxicol. in vitro: An International Journal Published in Association with BIBRA 20, 1249–1264 2006.

    Article  CAS  Google Scholar 

  24. Farh, K. K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Favaro, E. et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5, e10345 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ninomiya, M. et al. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS One 8, e66086 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhang, Y., Liao, J. M., Zeng, S. Y. X. & Lu, H. p53 downregulates Down syndrome-associated DYRK1A through miR-1246. Embo Rep. 12, 811–817 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology 1, 11–21 2000.

    CAS  PubMed  Google Scholar 

  29. Mattson, M. P. & Chan, S. L. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34, 385–397 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 2007.

    Article  CAS  PubMed  Google Scholar 

  31. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 1983.

    Article  CAS  PubMed  Google Scholar 

  33. Park, Y. S. et al. Identification of three novel mutations in Korean phenylketonuria patients: R53H, N207D, and Y325X. Human Mutation Supplement 1, S121–122 (1998).

    Article  Google Scholar 

  34. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B Met. 57, 289–300 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y., Lim, Jh., Jeong, SC. et al. Hexanal-induced changes in miRNA-mRNA interactions in A549 human alveolar epithelial cells. Toxicol. Environ. Health Sci. 7, 143–159 (2015). https://doi.org/10.1007/s13530-015-0233-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-015-0233-1

Keywords

Navigation