Skip to main content
Log in

Toxicology study with microRNA

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

microRNAs have a principal role in many biological processes, such as gene expression, control and development, as well as cellular processes. In recent years, microRNAs have attracted great interest in the field of toxicology. When organisms are exposed to toxic compounds, microRNAs expression is altered, which affects mRNA transcription and protein translation and causes adverse biological effects. Here, we introduce microRNAs as research tools, the specific expression profile of microRNAs following exposure to different toxicants or diseases that were found to be sensitive biomarkers. Finally, we address several issues related to microRNAs in toxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waters, M.D. & Fostel, J. M. Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5:936–948 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Sahu, S.C. Hepatotoxicity: From genomics to in vitro and in vivo models. (John Wiley & Sons, 2008).

  3. Zhang, B., Wang, Q. & Pan, X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ambros, V. The functions of animal microRNAs. Nature 431:350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Elamin, B.K. et al. MicroRNA response to environ-mental mutagens in liver. Mutat Res 717:67–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lema, C. & Cunningham, M. J. MicroRNAs and their implications in toxicological research. Toxicol Lett 198:100–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Yokoi, T. & Nakajima, M. microRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol 53:377–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Rieger, J.K., Klein, K., Winter, S. & Zanger, U. M. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 41:1752–1762 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Takagi, S., Nakajima, M., Mohri, T. & Yokoi, T. Post-transcriptional regulation of human pregnane X recep-tor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283:9674–9680 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, W., Zhao, J. & Pei, G. Activation of aryl hydro-carbon receptor (ahr) by tranilast, an anti-allergy drug, promotes miR-302 expression and cell reprogramming. J Biol Chem 288:22972–22984 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shizu, R. et al. Xenobiotic-induced hepatocyte prolif-eration associated with constitutive active/androstane receptor (CAR) or peroxisome proliferator-activated receptor a (PPARa) is enhanced by pregnane X re-ceptor (PXR) activation in mice. PLoS One 8:e61802 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang, H., Ach, R.A. & Curry, B. Direct and sensitive miRNA profiling from low-input total RNA. RNA 13: 151–159 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dudley, A.M., Aach, J., Steffen, M.A. & Church, G. M. Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci U S A 99: 7554–7559 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yauk, C.L., Rowan-Carroll, A., Stead, J.D. H. & Wil-liams, A. Cross-platform analysis of global microRNA expression technologies. BMC Genomics 11:330–339 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Nolan, T., Hands, R.E. & Bustin, S. A. Quantifica-tion of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582(2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  17. Shi, R. & Chiang, V. L. Facile means for quantifying microRNA expression by real-time PCR. Biotechni-ques 39:519–525 (2005).

    Article  CAS  Google Scholar 

  18. Benes, V. & Castoldi, M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Creighton, C.J., Reid, J.G. & Gunaratne, P. H. Expres-sion profiling of microRNAs by deep sequencing. Brief Bioinform 10:490–497 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Margulies, M. et al. Genome sequencing in microfab-ricated high-density picolitre reactors. Nature 437: 376–380 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shendure, J. et al. Accurate multiplex polony sequenc-ing of an evolved bacterial genome. Science 309:1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Cock, P.J. et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic. Acids Res 38:1767–1771 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Motameny, S., Wolters, S., Nurnber, P. & Schumacher, B. Next generation sequencing of miRNAs-strategies, resources and methods. Genes 1:70–84 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Betel, D. et al. The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue): D149–153 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lewis, B.P., Burge, C.B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16:460–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Krol, J., Loedige, I. & Filipowciz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610 (2010).

    CAS  PubMed  Google Scholar 

  29. Davis-Dusenbery, B.N. & Hata, A. MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Bio-genesis Regulatory Pathways. Genes Cancer 1:1100–1114 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yamamoto, Y. et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Bio-markers 14:529–538 (2009).

    CAS  Google Scholar 

  31. Zhu, W., Qin, W., Atasoy, U. & Sauter, E. R. Circu-lating microRNAs in breast cancer and healthy sub-jects. BMC Res Notes 2:89 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mitchell, P.S. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ng, E.K. et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a poten-tial marker for colorectal cancer screening. Gut 58: 1375–1381 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Perry, M.M. et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithe-lial cells. J Immunol 180:5689–5698 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Liu, X. et al. MicroRNA-146a modulates human bron-chial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem Biophys Res Com-mun 380:177–182 (2009).

    Article  CAS  Google Scholar 

  36. Bazzoni, F. et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 106:5282–5287 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Taganov, K.D., Boldin, M.P., Chang, K.J. & Balti-more, D. NF-kappaB-dependent induction of micro-RNA miR-146, an inhibitor targeted to signaling pro-teins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kawano, S. & Nakamachi, Y. miR-124a as a key regu-lator of proliferation and MCP-1 secretion in synovio-cytes from patients with rheumatoid arthritis. Ann Rheum Dis Suppl 1:i88–91 (2011).

    Article  Google Scholar 

  39. Mattes, J. et al. Antagonism of microRNA-126 sup-presses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 106:18704–18709 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sato, T. et al. Reduced miR-146a increases prostaglan-din E2 in chronic obstructive pulmonary disease fibro-blasts. Am Respir Crit Care Med 182:1020–1029 (2010).

    CAS  Google Scholar 

  41. Ezzie, M.E. et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax 67:122–131 (2012).

    Article  PubMed  Google Scholar 

  42. McNeill, E. & Van Vactor, D. MicroRNAs shape the neuronal landscape. Neuron 75:363–379 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Åkerblom, M. et al. MicroRNA-124 is a subventricu-lar zone neuronal fate determinant. J NeuroSci 32: 8879–8889 (2012).

    Article  PubMed  Google Scholar 

  44. Yoo, A.S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lehmann, S.M. et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, W. et al. miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging (2014) [Epub ahead of print].

    Google Scholar 

  47. Kim, J. et al. A MicroRNA feedback circuit in mid-brain dopamine neurons. Science 317:1220–1224 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Geekiyanage, H. & Chan, C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amy-loid p, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Nelson, P.T. & Wang, W. X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21:75–79 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hébert, S.S. et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  51. Buckley, N.J., Johnson, R., Zuccato, C., Bithell, A. & Cattaneo, E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis 39:28–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Shibata, M., Nakao, H., Kiyonari, H., Abe, T. & Aiza-wa, S. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription fac-tors. J Neurosci 31:3407–3422 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Waalkes, M.P. Cadmium carcinogenesis. Mutat Res 533:107–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Román, D.A. et al. An approach to the arsenic status in cardiovascular tissues of patients with coronary heart disease. Hum Exp Toxicol 30:1150–1164 (2011).

    Article  PubMed  Google Scholar 

  55. Tchounwou, P.B., Centeno, J.A. & Patlolla, A. K. Arsenic toxicity, mutagenesis, and carcinogenesis—a health risk assessment and management approach. Mol Cell Biochem 255:47–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Ali, N. et al. Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 9:36–44 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wang, Z. et al. Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 121: 110–122 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Beezhold, K. et al. miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 123:411–420 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bollati, V. et al. Exposure to metal-rich particulate matter modifies the expression of candidate micro-RNAs in peripheral blood leukocytes. Environ Health Perspect 118:763–768 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Avissar-Whiting, M. et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 29:401–406 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tilghman, S.L. et al. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 7:e32754 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wickramasinghe, N.S. et al. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 37:2584–2595 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Hsu, P.Y. et al. Xenoestrogen-induced epigenetic re-pression of microRNA-9-3 in breast epithelial cells. Cancer Res 69:5936–5945 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Paul, S. et al. Impact of miRNA deregulation on mRNA expression profiles in response to environmen-tal toxicant, nonylphenol. Mol Cell Toxicol 7:259–269 (2011).

    Article  CAS  Google Scholar 

  65. An, Y.R. et al. Identification of genetic/epigenetic biomarkers for supporting decision of VOCs exposure. BioChip J 7:1–5 (2013).

    Article  CAS  Google Scholar 

  66. An, Y.R. et al. Prediction of VOCs based on function-al analysis by decision. Mol Cell Toxicol 9:277–284 (2013).

    Article  CAS  Google Scholar 

  67. Song, M.K., Song, M., Choi, H.S., Park, H.K. & Ryu, J. C. Discovery of a characteristic molecular signature by microarray analysis of whole-blood gene expression in workers exposed to volatile organic com-pounds. Biochip J 9:277–284 (2013).

    Google Scholar 

  68. Rager, J.E., Smeester, L., Jaspers, I., Sexton, K.G. & Fry, R. C. Epigenetic changes induced by air toxics: formaldehyde exposure alters miRNA expression pro-files in human lung cells. Environ Health Perspect 119:494–500 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Li, G.Y. et al. Identification of gene markers for form-aldehyde exposure in humans. Environ Health Per-spect 115:1460–1466 (2007).

    CAS  Google Scholar 

  70. Li, D. et al. Aberrant expression of miR-638 contri-butes to benzo(a)pyrene-induced human cell transfor-mation. Toxicol Sci 125:382–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, Y. et al. miR-106a-mediated malignant trans-formation of cells induced by anti-benzo[a]pyrene-trans-7,8-diol-9,10-epoxide. Toxicol Sci 119:50–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Song, M.K., Song, M., Choi, H.S. & Ryu, J. C. Benzo [k]fluoranthene-induced changes in miRNA-mRNA interactions in human hepatocytes. Toxicol Environ Health Sci 4:143–153 (2012).

    Article  Google Scholar 

  73. Fabbri, M., Urani, C., Sacco, M.G., Procaccianti, C. & Gribaldo, L. Whole genome analysis and micro-RNAs regulation in HepG2 cells exposed to cadmium. ALTEX 29:173–182 (2012).

    Article  PubMed  Google Scholar 

  74. Marczylo, E.L., Amoako, A.A., Konje, J.C., Gant, T.W. & Marczylo, T. H. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7: 432–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Schembri, F. et al. MicroRNAs as modulators of smok-ing-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A 106:2319–2324 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Teng, Y. Endocrine disruptors fludioxonil and fenhexamid stimulate miR-21 expression in breast can-cer cells. Toxicol Sci 131:71–83 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Marsit, C.J., Eddy, K. & Kelsey, K. T. MicroRNA responses to cellular stress. Cancer Res 66:10843–10848 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lukiw, W.J. & Pogue, A. I. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101:1265–1269 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Siddeek, B. et al. MicroRNAs as potential biomarkers in diseases and toxicology. Mutat Res 764–765:46–87 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yong Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y.R., Hwang, S.Y. Toxicology study with microRNA. Mol. Cell. Toxicol. 10, 127–134 (2014). https://doi.org/10.1007/s13273-014-0014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0014-y

Keywords

Navigation