Skip to main content

miRNA Biogenesis and Regulation of Diseases: An Updated Overview

  • Protocol
  • First Online:
MicroRNA Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2595))

Abstract

MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to the target mRNAs. Since it was discovered in 1993, miRNA is found in all eukaryotic cells conserved across the species. miRNA-size molecules are also known to be found in prokaryotes. Regulation of miRNAs is extensively studied for their role in biological processes as well as in development and progression of various human diseases including neurodegenerative diseases, cardiovascular disease, and cancer. miRNA-based therapy has a promising application, and with a good delivery system, miRNA therapeutics can potentially be a success. miRNAs and EVs have potential therapeutic and prognostic application in a range of disease models. This chapter summarizes miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs hold huge potential for diagnostic and prognostic biomarkers and as predictors of drug response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  Google Scholar 

  2. Felekkis K, Touvana E, Stefanou C, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14(4):236–240

    CAS  Google Scholar 

  3. Friedländer MR, Lizano E, Houben AJ, Bezdan D, Báñez-Coronel M, Kudla G, Mateu-Huertas E, Kagerbauer B, González J, Chen KC, LeProust EM, Martí E, Estivill X (2014) Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 15(4):R57. https://doi.org/10.1186/gb-2014-15-4-r57

    Article  CAS  Google Scholar 

  4. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. https://doi.org/10.1093/nar/gkq1027

    Article  CAS  Google Scholar 

  5. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. https://doi.org/10.1038/ng1590

    Article  CAS  Google Scholar 

  6. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. https://doi.org/10.1038/nrg2290

    Article  CAS  Google Scholar 

  7. Saetrom P, Heale BS, Snøve O, Aagaard L, Alluin J, Rossi JJ (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35(7):2333–2342. https://doi.org/10.1093/nar/gkm133

    Article  CAS  Google Scholar 

  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  Google Scholar 

  9. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. https://doi.org/10.1038/35002607

    Article  CAS  Google Scholar 

  10. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. https://doi.org/10.1126/science.1064921

    Article  CAS  Google Scholar 

  11. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862. https://doi.org/10.1126/science.1065062

    Article  CAS  Google Scholar 

  12. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864. https://doi.org/10.1126/science.1065329

    Article  CAS  Google Scholar 

  13. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039. https://doi.org/10.1073/pnas.0510928103

    Article  CAS  Google Scholar 

  14. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670. https://doi.org/10.1093/emboj/cdf476

    Article  CAS  Google Scholar 

  15. Dexheimer PJ, Cochella L (2020) MicroRNAs: from mechanism to organism. Front Cell Dev Biol 8:409. https://doi.org/10.3389/fcell.2020.00409

    Article  Google Scholar 

  16. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86. https://doi.org/10.1126/science.1091903

    Article  CAS  Google Scholar 

  17. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL (2010) Structure and activity of putative intronic miRNA promoters. RNA 16(3):495–505. https://doi.org/10.1261/rna.1731910

    Article  Google Scholar 

  18. Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22(18):2535–2549. https://doi.org/10.1101/gad.1678608

    Article  CAS  Google Scholar 

  19. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in drosophila. Cell 130(1):89–100. https://doi.org/10.1016/j.cell.2007.06.028

    Article  CAS  Google Scholar 

  20. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. https://doi.org/10.1038/nature01957

    Article  CAS  Google Scholar 

  21. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904. https://doi.org/10.1016/j.biochi.2011.06.017

    Article  CAS  Google Scholar 

  22. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. https://doi.org/10.1101/gad.1158803

    Article  CAS  Google Scholar 

  23. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350. https://doi.org/10.1016/s1534-5807(03)00228-4

    Article  CAS  Google Scholar 

  24. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739. https://doi.org/10.1016/s0960-9822(02)00809-6

    Article  CAS  Google Scholar 

  25. MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145. https://doi.org/10.1016/j.sbi.2006.12.002

    Article  CAS  Google Scholar 

  26. Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ (2012) The molecular architecture of human dicer. Nat Struct Mol Biol 19(4):436–440. https://doi.org/10.1038/nsmb.2268

    Article  CAS  Google Scholar 

  27. Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJ (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132(3):1382–1390. https://doi.org/10.1104/pp.103.021980

    Article  CAS  Google Scholar 

  28. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130(8):1493–1504. https://doi.org/10.1242/dev.00362

    Article  CAS  Google Scholar 

  29. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884. https://doi.org/10.1073/pnas.0803230105

    Article  Google Scholar 

  30. Ma E, MacRae IJ, Kirsch JF, Doudna JA (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380(1):237–243. https://doi.org/10.1016/j.jmb.2008.05.005

    Article  CAS  Google Scholar 

  31. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532. https://doi.org/10.1038/sj.emboj.7600942

    Article  CAS  Google Scholar 

  32. Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K, Miyazono K (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44(3):424–436. https://doi.org/10.1016/j.molcel.2011.09.012

    Article  CAS  Google Scholar 

  33. Sanghvi VR, Steel LF (2011) The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol 85(23):12614–12621. https://doi.org/10.1128/JVI.05240-11

    Article  CAS  Google Scholar 

  34. Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131(6):1097–1108. https://doi.org/10.1016/j.cell.2007.10.032

    Article  CAS  Google Scholar 

  35. Yang N, Cao Y, Han P, Zhu X, Sun L, Li G (2012) Tools for investigation of the RNA endonuclease activity of mammalian Argonaute2 protein. Anal Chem 84(5):2492–2497. https://doi.org/10.1021/ac2032854

    Article  CAS  Google Scholar 

  36. Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3(1):36–43. https://doi.org/10.1038/nchembio848

    Article  CAS  Google Scholar 

  37. Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060. https://doi.org/10.1126/science.1073827

    Article  CAS  Google Scholar 

  38. Lai EC (2002) Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364. https://doi.org/10.1038/ng865

    Article  CAS  Google Scholar 

  39. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34. https://doi.org/10.1016/s0092-8674(01)00431-7

    Article  CAS  Google Scholar 

  40. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science 328(5985):1534–1539. https://doi.org/10.1126/science.1187058

    Article  CAS  Google Scholar 

  41. Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD (2011) Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21(5):369–376. https://doi.org/10.1016/j.cub.2011.01.067

    Article  CAS  Google Scholar 

  42. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(a) polymerase GLD-2. Genes Dev 23(4):433–438. https://doi.org/10.1101/gad.1761509

    Article  CAS  Google Scholar 

  43. Chen AJ, Paik JH, Zhang H, Shukla SA, Mortensen R, Hu J, Ying H, Hu B, Hurt J, Farny N, Dong C, Xiao Y, Wang YA, Silver PA, Chin L, Vasudevan S, Depinho RA (2012) STAR RNA-binding protein quaking suppresses cancer via stabilization of specific miRNA. Genes Dev 26(13):1459–1472. https://doi.org/10.1101/gad.189001.112

    Article  CAS  Google Scholar 

  44. Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY, Zen K (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22(3):504–515. https://doi.org/10.1038/cr.2011.137

    Article  CAS  Google Scholar 

  45. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  Google Scholar 

  46. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978. https://doi.org/10.1016/0092-8674(83)90040-5

    Article  CAS  Google Scholar 

  47. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823. https://doi.org/10.1038/mt.2015.44

    Article  CAS  Google Scholar 

  48. Rani S, Ritter T (2016) The exosome – a naturally secreted nanoparticle and its application to wound healing. Adv Mater 28(27):5542–5552. https://doi.org/10.1002/adma.201504009

    Article  CAS  Google Scholar 

  49. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687. https://doi.org/10.1111/j.1600-0854.2010.01041.x

    Article  CAS  Google Scholar 

  50. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD, Thomson AW (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266. https://doi.org/10.1182/blood-2004-03-0824

    Article  CAS  Google Scholar 

  51. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, Mörgelin M, Belting M (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724. https://doi.org/10.1074/jbc.M112.445403

    Article  CAS  Google Scholar 

  52. Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K (2021) Small extracellular vesicles: a novel avenue for cancer management. Front Oncol 11:638357. https://doi.org/10.3389/fonc.2021.638357

    Article  Google Scholar 

  53. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564. https://doi.org/10.1002/stem.1129

    Article  CAS  Google Scholar 

  54. Elbay A, Ercan Ç, Akbaş F, Bulut H, Ozdemir H (2019) Three new circulating microRNAs may be associated with wet age-related macular degeneration. Scand J Clin Lab Invest 79(6):388–394. https://doi.org/10.1080/00365513.2019.1637931

    Article  CAS  Google Scholar 

  55. ElShelmani H, Wride MA, Saad T, Rani S, Kelly DJ, Keegan D (2021) The role of deregulated MicroRNAs in age-related macular degeneration pathology. Transl Vis Sci Technol 10(2):12. https://doi.org/10.1167/tvst.10.2.12

    Article  Google Scholar 

  56. Romaine SP, Tomaszewski M, Condorelli G, Samani NJ (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101(12):921–928. https://doi.org/10.1136/heartjnl-2013-305402

    Article  CAS  Google Scholar 

  57. Zhao W, Zhao SP, Zhao YH (2015) MicroRNA-143/−145 in cardiovascular diseases. Biomed Res Int 2015:531740. https://doi.org/10.1155/2015/531740

    Article  CAS  Google Scholar 

  58. Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685. https://doi.org/10.1371/journal.pone.0088685

    Article  CAS  Google Scholar 

  59. Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 8(8):e73304. https://doi.org/10.1371/journal.pone.0073304

    Article  CAS  Google Scholar 

  60. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21. https://doi.org/10.1186/s13058-015-0526-y

    Article  CAS  Google Scholar 

  61. Rani S, Gately K, Crown J, O'Byrne K, O'Driscoll L (2013) Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 14(12):1104–1112. https://doi.org/10.4161/cbt.26370

    Article  Google Scholar 

  62. Peng Y, Dai Y, Hitchcock C, Yang X, Kassis ES, Liu L, Luo Z, Sun HL, Cui R, Wei H, Kim T, Lee TJ, Jeon YJ, Nuovo GJ, Volinia S, He Q, Yu J, Nana-Sinkam P, Croce CM (2013) Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci U S A 110(37):15043–15048. https://doi.org/10.1073/pnas.1307107110

    Article  Google Scholar 

  63. Zhu J, Zheng Z, Wang J, Sun J, Wang P, Cheng X, Fu L, Zhang L, Wang Z, Li Z (2014) Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 5:149. https://doi.org/10.3389/fgene.2014.00149

    Article  CAS  Google Scholar 

  64. Gee HE, Camps C, Buffa FM, Colella S, Sheldon H, Gleadle JM, Ragoussis J, Harris AL (2008) MicroRNA-10b and breast cancer metastasis. Nature 455(7216):E8–E9.; author reply E9. https://doi.org/10.1038/nature07362

    Article  CAS  Google Scholar 

  65. Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, Lin J, Su M, Shi Y, Cao D, Zhou Y, Liao Q (2020) Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res 39(1):67. https://doi.org/10.1186/s13046-020-01570-6

    Article  CAS  Google Scholar 

  66. Tian X, Sun M, Wu H, Chen C, Li H, Qiu S, Wang T, Han J, Xiao Q, Chen K (2021) Exosome-derived miR-let-7c promotes angiogenesis in multiple myeloma by polarizing M2 macrophages in the bone marrow microenvironment. Leuk Res 105:106566. https://doi.org/10.1016/j.leukres.2021.106566

    Article  CAS  Google Scholar 

  67. Yoshii S, Hayashi Y, Iijima H, Inoue T, Kimura K, Sakatani A, Nagai K, Fujinaga T, Hiyama S, Kodama T, Shinzaki S, Tsujii Y, Watabe K, Takehara T (2019) Exosomal microRNAs derived from colon cancer cells promote tumor progression by suppressing fibroblast TP53 expression. Cancer Sci 110(8):2396–2407. https://doi.org/10.1111/cas.14084

    Article  CAS  Google Scholar 

  68. Mahati S, Fu X, Ma X, Zhang H, Xiao L (2021) Delivery of miR-26a using an exosomes-based Nanosystem inhibited proliferation of hepatocellular carcinoma. Front Mol Biosci 8:738219. https://doi.org/10.3389/fmolb.2021.738219

    Article  CAS  Google Scholar 

  69. Munir J, Yoon JK, Ryu S (2020) Therapeutic miRNA-enriched extracellular vesicles: current approaches and future prospects. Cell 9(10). https://doi.org/10.3390/cells9102271

  70. Naseri Z, Oskuee RK, Jaafari MR, Forouzandeh Moghadam M (2018) Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine 13:7727–7747. https://doi.org/10.2147/IJN.S182384

    Article  CAS  Google Scholar 

  71. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y (2019) Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res 52(12):e8735. https://doi.org/10.1590/1414-431X20198735

    Article  Google Scholar 

  72. Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z (2020) Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol 18(1):10. https://doi.org/10.1186/s12951-019-0563-2

    Article  CAS  Google Scholar 

  73. Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, Wang D, Xia J (2021) Correction to “chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy”. ACS Appl Mater Interfaces 13(49):59591. https://doi.org/10.1021/acsami.1c21472

    Article  CAS  Google Scholar 

  74. Giunti D, Marini C, Parodi B, Usai C, Milanese M, Bonanno G, Kerlero de Rosbo N, Uccelli A (2021) Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation. Sci Rep 11(1):1740. https://doi.org/10.1038/s41598-021-81039-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vishnoi, A., Rani, S. (2023). miRNA Biogenesis and Regulation of Diseases: An Updated Overview. In: Rani, S. (eds) MicroRNA Profiling. Methods in Molecular Biology, vol 2595. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2823-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2823-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2822-5

  • Online ISBN: 978-1-0716-2823-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics