Skip to main content
Log in

Anaerobic co-digestion of biogas effluent and sugarcane filter cake for methane production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Proportions of biogas effluent, sugarcane filter cake, and anaerobic sludge for methane production were optimized in batch fermentation using a mixture design with the D-optimal design method. The highest methane yield (MY) of 175.1 mL CH4/g volatile solid (VS) was achieved at a biogas effluent and filter cake of 30.00 and 30.00 g VS/L, respectively. Results suggested that the methane production could occur by normal floras in biogas effluent and filter cake without the addition of inoculum. The data from batch experiments were used to evaluate the hydraulic retention time (HRT) by the first-order kinetic model. The optimum proportions and predicted HRT of 30 days were further used to determine their efficacy in generating methane in the semi-continuous fermentation process using the continuous stirred tank reactor (CSTR). It was confirmed that the optimum proportions and HRT of 30 days gave a maximum MY of 92.8 mL CH4/g VS and methane production rate of 185.9 mL CH4/L day.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boonpiyo S, Sittijunda S, Reungsang A (2018) Co-digestion of napier grass with food waste and napier silage with food waste for methane production. Energies 11:1–13. https://doi.org/10.3390/en11113200

    Article  Google Scholar 

  2. Wang Z, Shao S, Zhang C, Lu D, Ma H, Ren X (2015) Pretreatment of vinegar residue and anaerobic sludge for enhanced hydrogen and methane production in the two-stage anaerobic system. Int J Hydrog Energy 40:4494–4501. https://doi.org/10.1016/j.ijhydene.2015.02.029

    Article  Google Scholar 

  3. Cruz-Salomón A, Meza-Gordillo R, Rosales-Quintero A, Ventura-Canseco C, Lagunas-Rivera S, Carrasco-Cervantes J (2016) Biogas production from a native beverage vinasse using a modified UASB bioreactor. Fuel 198:170–174. https://doi.org/10.1016/j.fuel.2016.11.046

  4. Mustafa AM, Li H, Radwan AA, Sheng K, Chen X (2018) Effect of hydrothermal and Ca (OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60. https://doi.org/10.1016/j.biortech.2018.03.028

    Article  Google Scholar 

  5. Janke L, Weinrich S, Leite AF, Sträuber H, Nikolausz M, Nelles M, Stinner W (2019) Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: assessment of batch versus semi-continuous experiments. Renew Energy 143:1416–1426. https://doi.org/10.1016/j.renene.2019.05.029

    Article  Google Scholar 

  6. Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress challenges and perspectives. Renew Sust Energ Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

  7. Tsapekos P, Kougias PG, Kuthiala S, Angelidaki I (2018) Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers Manag 159:931–937. https://doi.org/10.1016/j.enconman.2018.01.002

    Article  Google Scholar 

  8. Tsapekos P, Alvarado-Morales M, Kougias PG, Konstantopoulos K, Angelidaki I (2019) Co-digestion of municipal waste biopulp with marine macroalgae focusing on sodium inhibition. Energy Convers Manag 180:931–937. https://doi.org/10.1016/j.enconman.2018.11.048

    Article  Google Scholar 

  9. Li W, Siddhu MAH, Amin FR, He Y, Zhang R, Liu G, Chen C (2018) Methane production through anaerobic co-digestion of sheep dung and waste paper. Energy Convers Manag 156:279–287. https://doi.org/10.1016/j.enconman.2017.08.002

    Article  Google Scholar 

  10. Elsayed M, Andres Y, Blel W, Gad A, Ahmed A (2016) Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers Manag 117:538–547. https://doi.org/10.1016/j.enconman.2016.03.064

    Article  Google Scholar 

  11. Shen J, Zhao C, Liu Y, Zhang R, Liu G, Chen C (2018) Biogas production from anaerobic co-digestion of durian shell with chicken, dairy, and pig manures. Energy Convers Manag 198:110535–110545. https://doi.org/10.1016/j.enconman.2018.06.099

    Article  Google Scholar 

  12. Rahman MA, Saha CK, Ward AJ, Møller HB, Alam MM (2019) Anaerobic co-digestions of agro-industrial waste blends using mixture design. Biomass Bioenergy 122:156–164. https://doi.org/10.1016/j.biombioe.2019.01.036

    Article  Google Scholar 

  13. Office of Cane and Sugar Board (2020) Report on total cane crushing and sugar production 2019/2020. http://www.ocsb.go.th/upload/production/fileupload/142-6015.pdf.

  14. Ziemiński K, Kowalska-Wentel M (2015) Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour Technol 180:274–280. https://doi.org/10.1016/j.biortech.2014.12.035

    Article  Google Scholar 

  15. Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sust Energ Rev 42:627–642. https://doi.org/10.1016/J.RSER.2014.10.053

    Article  Google Scholar 

  16. Naspolini BF, De Oliveira Machado AC, Cravo WB et al (2017) Bioconversion of sugarcane vinasse into high-added value products and energy. Biomed Res Int 2017:1–11. https://doi.org/10.1155/2017/8986165

    Article  Google Scholar 

  17. Parsaee M, Kiani M, Kiani D, Karimi K (2019) A review of biogas production from sugarcane vinasse. Biomass Bioenergy 122:117–125. https://doi.org/10.1016/j.biombioe.2019.01.034

    Article  Google Scholar 

  18. Barros VGd, Duda RM, Vantini JdS, Omori WP, Ferro MIT, Oliveira RAd (2017) Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresour Technol 244:371–381. https://doi.org/10.1016/j.biortech.2017.07.106

  19. de Barros VG, Duda RM, de Oliveira RA (2016) Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Brazilian J Microbiol 47:628–639. https://doi.org/10.1016/j.bjm.2016.04.021

    Article  Google Scholar 

  20. Wadjeam P, Reungsang A (2018) Determining the optimum proportions of cassava starch wastewater, hydrogenic effluent and anaerobic sludge for methane production. Chiang Mai J Sci 45:2609–2622

    Google Scholar 

  21. Bashiri R, Farhadian M, Asadollahi MA, Jeihanipour A (2016) Anaerobic digested sludge: a new supplementary nutrient source for ethanol production. Int J Environ Sci Technol 13:763–772. https://doi.org/10.1007/s13762-015-0925-8

    Article  Google Scholar 

  22. Janke L, Leite A, Batista K, Weinrich S, Sträuber H, Nikolausz M, Nelles M, Stinner W (2016) Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: effects of urea supplementation and sodium hydroxide pretreatment. Bioresour Technol 199:235–244. https://doi.org/10.1016/j.biortech.2015.07.117

    Article  Google Scholar 

  23. Talha Z, Ding W, Mehryar E, Hassan M., Bi J (2016) Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production. Biomed Res Int 8650597. https://doi.org/10.1155/2016/8650597

  24. López González LM, Pereda Reyes I, Romero Romero O (2017) Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Manag 68:139–145. https://doi.org/10.1016/j.wasman.2017.07.016

    Article  Google Scholar 

  25. Janke L, Leite A, Nikolausz M, Schmidt T, Liebetrau J, Nelles M, Stinner W (2015) Biogas production from sugarcane waste: assessment on kinetic challenges for process designing. Int J Mol Sci 16:20685–20703. https://doi.org/10.3390/ijms160920685

    Article  Google Scholar 

  26. Janke L, Weinrich S, Leite AF, Terzariol FK, Nikolausz M, Nelles M, Stinner W (2017) Improving anaerobic digestion of sugarcane straw for methane production: combined benefits of mechanical and sodium hydroxide pretreatment for process designing. Energy Convers Manag 141:378–389. https://doi.org/10.1016/j.enconman.2016.09.083

    Article  Google Scholar 

  27. Yeom DW, Song YS, Kim SR, Lee SG, Kang MH, Lee S, Choi YW (2015) Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine 10:3865–3878. https://doi.org/10.2147/IJN.S83520

  28. Aksoylu Özbek Z, Günç Ergönül P (2020) Optimisation of wall material composition of freeze–dried pumpkin seed oil microcapsules: interaction effects of whey protein, maltodextrin, and gum arabic by D–optimal mixture design approach. Food Hydrocoll 107:105909. https://doi.org/10.1016/j.foodhyd.2020.105909

    Article  Google Scholar 

  29. Borhan FP, Abd Gani SS, Shamsuddin R (2014) The use of D-optimal mixture design in optimising okara soap formulation for stratum corneum application. Sci World J 2014:1–8. https://doi.org/10.1155/2014/173979

    Article  Google Scholar 

  30. Amini Sarteshnizi R, Hosseini H, Bondarianzadeh D, Colmenero FJ, khaksar R (2015) Optimization of prebiotic sausage formulation: effect of using β-glucan and resistant starch by D-optimal mixture design approach. LWT - Food Sci Technol 62:704–710. https://doi.org/10.1016/j.lwt.2014.05.014

    Article  Google Scholar 

  31. Nualsri C, Reungsang A, Plangklang P (2016) Biochemical hydrogen and methane potential of sugarcane syrup using a two-stage anaerobic fermentation process. Ind Crop Prod 82:88–99. https://doi.org/10.1016/j.indcrop.2015.12.002

    Article  Google Scholar 

  32. Caillet H, Adelard L (2020) Start - up strategy and process performance of semi - continuous anaerobic digestion of raw sugarcane vinasse. Waste Biomass Valorization. https://doi.org/10.1007/s12649-020-00964-z

  33. Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896. https://doi.org/10.1016/j.biombioe.2006.02.001

    Article  Google Scholar 

  34. APHA (1995) Standard methods for the examination of water and wastewater. In: (19th ed.), American Public Health Association, Washington, D.C

  35. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  36. APHA, AWWA (1992) Standard methods for the examination of water and wastewater. In: (18th ed.), American Public Health Association, Washington, D.C

  37. Phanduang O, Lunprom S, Salakkam A et al (2019) Improvement in energy recovery from Chlorella sp. biomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. Int J Hydrog Energy 44:23899–23911. https://doi.org/10.1016/j.ijhydene.2019.07.103

  38. Kim J, Kim J, Lee C (2019) Anaerobic co-digestion of food waste, human feces, and toilet paper: methane potential and synergistic effect. Fuel 248:189–195. https://doi.org/10.1016/j.fuel.2019.03.081

    Article  Google Scholar 

  39. Rodríguez-Amado J, Lafourcade-Prada A, Arranz JCE, Quevedo HM, Colarte AI, Carvalho JT (2015) Optimization of a novel tablets formulation using D-optimal mixture design. African J Pharm Pharmacol 9:474–483. https://doi.org/10.5897/ajpp2014.4296

    Article  Google Scholar 

  40. Omar SM, AbdAlla FI, Abdelgawad NM (2018) Preparation and optimization of fast-disintegrating tablet containing naratriptan hydrochloride using D-optimal mixture design. AAPS PharmSciTech 19:2472–2487. https://doi.org/10.1208/s12249-018-1061-9

    Article  Google Scholar 

  41. Vivekanand V, Mulat DG, Eijsink VGH, Horn SJ (2018) Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour Technol 249:35–41. https://doi.org/10.1016/j.biortech.2017.09.169

    Article  Google Scholar 

  42. Wang Y, Li G, Chi M, Sun Y, Zhang J, Jiang S, Cui Z (2018) Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion. Bioresour Technol 250:328–336. https://doi.org/10.1016/j.biortech.2017.11.055

    Article  Google Scholar 

  43. Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Reports 5:14–21. https://doi.org/10.1016/j.btre.2014.10.005

    Article  Google Scholar 

  44. Iltchenco J, Almeida LG, Beal LL, Marconatto L, dos Anjos Borges LG, Giongo A, Paesi S (2020) Microbial consortia composition on the production of methane from sugarcane vinasse. Biomass Convers Biorefinery 10:299–309. https://doi.org/10.1007/s13399-019-00426-0

    Article  Google Scholar 

  45. Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280. https://doi.org/10.1016/j.biortech.2012.09.081

    Article  Google Scholar 

  46. Yu M, Gao M, Wang L, Ren Y, Wu C, Ma H, Wang Q (2018) Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers’ grains and food waste by ethanol pre-fermentation. Environ Sci Pollut Res 25:30281–30291. https://doi.org/10.1007/s11356-018-3027-6

    Article  Google Scholar 

  47. Wikandari R, Millati R, Taherzadeh MJ, Niklasson C (2018) Effect of effluent recirculation on biogas production using two-stage anaerobic digestion of citrus waste. Molecules 23:1–11. https://doi.org/10.3390/molecules23123380

  48. Mei R, Narihiro T, Nobu MK, Kuroda K, Liu WT (2016) Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity. Nat Publ Gr 6:1–10. https://doi.org/10.1038/srep34090

    Article  Google Scholar 

  49. Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88:3454–3463. https://doi.org/10.1016/j.apenergy.2010.10.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research and Researcher for Industry (RRi), Thailand Science Research and Innovation (TSRI) (Grant No. PHD59I0060), for a Ph.D. scholarship to W. Wongarmat.

Funding

This study was financially supported by TRF Senior Research Scholar (Grant No. RTA6280001) and Taiwan Experience Education Program (TEEP), Master’s Program of Green Energy Science and Technology, Feng Chia University, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AR; funding acquisition: AR; investigation: WW; writing original draft: WW; writing, review, and editing: AR and SS; supervision: AR and SS; methodology: WW, AR, and CYC. All authors read and approved the manuscript.

Corresponding author

Correspondence to Alissara Reungsang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongarmat, W., Reungsang, A., Sittijunda, S. et al. Anaerobic co-digestion of biogas effluent and sugarcane filter cake for methane production. Biomass Conv. Bioref. 12, 901–912 (2022). https://doi.org/10.1007/s13399-021-01305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01305-3

Keywords

Navigation