Skip to main content
Log in

Microbial consortia composition on the production of methane from sugarcane vinasse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Vinasse is a by-product from the ethanol industry and can be used for methane production through anaerobic digestion process driven by microbial consortia. The microorganisms involved must be known to obtain an ideal methane production. The present work evaluated the production of methane and byproducts from different ratios substrate/biomass (S0/X0), using sludge from an effluent treatment of the vegetable oil industry as inoculum in media containing vinasse. Also, the microbial community of the best methane production bioassay was characterized by high-throughput DNA sequencing. The following chemical parameters were evaluated: methanogenic activity, chemical oxygen demand, carbohydrate consumption, and production of volatile fatty acids. The highest methane production occurred at S0/X0 ratio of 1.5, which produced 59.78 mmol CH4 L−1. A great variety of microorganism genera was identified by high-throughput DNA sequencing, showing differences in the microbial consortia of the initial and final sampling times. At the final sampling point, the classes Bacteroidia (Porphyromonadaceae—OTU genera unknown 42.26% and Bacteroides genus 10.58%) and the class Betaproteobacteria (Proteobacteria-Comamonadaceae OTU) were identified as the dominant bacteria. The most abundant archaeal genera in the bioassay were Methanosaeta, Methanomassiliicoccaceae OTU vadinCA11, and Methanobacterium. The identification of the microorganisms of consortia involved in anaerobic digestion can collaborate on technologies to increase methane production through microbial isolation, bioaugmentation, and co-cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. _Agência Nacional de Petróleo, Gás natural e biocombustíveis. Produção de etanol anidro e hidratado, segundo grandes regiões e unidades da Federação – 2008-2017. http://www.anp.gov.br/publicacoes/anuario-estatistico/anuario-estatistico-2018. Accessed 20 Oct 2018

  2. Hoarau J, Caro Y, Grondin I, Petit T (2018) Sugarcane vinasse processing: toward a status shift from waste to valuable resource. A review. J Water Process Eng 24:11–25. https://doi.org/10.1016/j.jwpe.2018.05.003

    Article  Google Scholar 

  3. Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products–an overview. Rene Ener 98:203–215. https://doi.org/10.1016/j.renene.2016.02.057

    Article  Google Scholar 

  4. Satyawali Y, Balakrishanan M (2008) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Environ Manag 86:481–497. https://doi.org/10.1016/j.jenvman.2006.12.024

    Article  Google Scholar 

  5. Sydney EB, Novak AC, Rosa D, Medeiros ABP, Brar SK, Larroche C, Soccol CR (2018) Screening and bioprospecting of anaerobic consortia for biohydrogen and volatile fatty acid production in a vinasse based medium through dark fermentation. Process Biochem 67(1–7):1–7. https://doi.org/10.1016/j.procbio.2018.01.012

    Article  Google Scholar 

  6. Mariano AP, Maciel Filho R (2012) Improvements in biobutanol fermentation and their impacts on distillation energy consumption and wastewater generation. Bioenerg Res 5(2):504–514. https://doi.org/10.1007/s12155-011-9172-0

    Article  Google Scholar 

  7. Sydney EB, Larroche C, Novak AC, Nouaille R, Sarma SJ, Brar SK, Letti AJ, Soccol VT, Soccol CR (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386. https://doi.org/10.1016/j.biortech.2014.02.042

    Article  Google Scholar 

  8. Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P (2017) Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83. https://doi.org/10.1016/j.ejbt.2017.01.004

    Article  Google Scholar 

  9. Kamdem I, Hiligsmann S, Vanderghem C, Jacquet N, Tiappi FM, Richel A, Jackes P, Thonart P (2018) Enhanced biogas production during anaerobic digestion of steam-pretreated lignocellulosic biomass from Williams Cavendish Banana plants. Waste Biomass Valor 9(2):175–185. https://doi.org/10.1007/s12649-016-9788-6

    Article  Google Scholar 

  10. Wu YR, He J (2013) Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresour Technol 139:5–12. https://doi.org/10.1016/j.biortech.2013.03.103

    Article  Google Scholar 

  11. Cisneros-Pérez C, Etchebehere C, Celis LB, Carrillo-Reyes J, Alatriste-Mondragón F, Razo-Flores E (2017) Effect of inoculum pretreatment on the microbial community structure and its performance during dark fermentation using anaerobic fluidized-bed reactors. Int J Hydrog Energy 42(15):9589–9599. https://doi.org/10.1016/j.ijhydene.2017.03.157

    Article  Google Scholar 

  12. Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40(11):3412–3418. https://doi.org/10.1016/j.procbio.2005.01.025

    Article  Google Scholar 

  13. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (2010) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, 2nd edn. Springer, New York, pp 25–469

    Google Scholar 

  14. Lee SH, Park JH, Kim SH, Yu BJ, Yoon JJ, Park HD (2015) Evidence of syntrophic acetate oxidation by Spirochaetes during anaerobic methane production. Bioresour Technol 190:543–549. https://doi.org/10.1016/j.biortech.2015.02.066

    Article  Google Scholar 

  15. Kundu K, Sharma S, Sreekrishnan TR (2017) Influence of process parameters on anaerobic digestion microbiome in bioenergy production: towards an improved understanding. Bioenerg Res 10(1):288–303. https://doi.org/10.1007/s12155-016-9789-0

    Article  Google Scholar 

  16. Wongwilaiwalin S, Mhuantong W, Tangphatsornruang S, Panichnumsin P, Champreda V, Tachaapaikoon C (2016) Isolation of cellulolytic microcosms from bagasse compost in co-digested fibrous substrates. Biomass Convers Biorefin 6(4):421–426. https://doi.org/10.1007/s13399-016-0199-5

    Article  Google Scholar 

  17. Xia C, Kumar A, Chen X, Tucker M, Liang Y (2018) Conversion of corn stover hydrolysates to acids: comparison between Clostridium carboxidivorans P7 and microbial communities developed from lake sediment and an anaerobic digester. Biomass Convers Biorefin 8(1):169–178. https://doi.org/10.1007/s13399-017-0239-9

    Article  Google Scholar 

  18. APHA (2012) Standard methods for water and wastewater examination, 19th edn. Am Public Health Assoc, Washington DC

    Google Scholar 

  19. Dubois M, Gilles A, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method of determination of sugars and related substances. Anal Chem 28:350–355. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  20. Lay JJ, Li Y, Noike T (1997) Influences of pH and moisture content on the bmethane production in high-solids sludge digestion. Water Res 31(6):1518–1524. https://doi.org/10.1016/S0043-1354(96)00413-7

    Article  Google Scholar 

  21. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. The ISME Journal 5(5):908–917. https://doi.org/10.1038/ismej.2010.171

    Article  Google Scholar 

  22. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics. 27(6):863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  Google Scholar 

  23. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  Google Scholar 

  24. Cole JR, Wang Q, Fish JA, Chai B, Mcgarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje J (2013) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  Google Scholar 

  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  Google Scholar 

  26. De Santis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  Google Scholar 

  27. Kiyuna LSM, Fuess LT, Zaiat M (2017) Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse. Bioresour Technol 232:103–112. https://doi.org/10.1016/j.biortech.2017.02.028

    Article  Google Scholar 

  28. Shin JD, Han SS, Eom KC, Sung SH, Park SW, Kim HO (2008) Predicting methane production potential of anaerobic co-digestion of swine manure and food waste. Environ Engineer Res 13(2):93–97. https://doi.org/10.4491/eer.2008.13.2.093

    Article  Google Scholar 

  29. Dias MF, Colturato LF, Oliveira JP, Leite LR, Oliveira G, Chernicharo CA, Araújo JC (2016) Metagenomic analysis of a desulphurisation system used to treat biogas from vinasse methanisation. Bioresour Technol 205:58–66. https://doi.org/10.1016/j.biortech.2016.01.007

    Article  Google Scholar 

  30. Cruz-Salomón A, Meza-Gordillo R, Rosales-Quintero A, Ventura-Canseco C, Lagunas-Rivera S, Carrasco-Cervantes J (2017) Biogas production from a native beverage vinasse using a modified UASB bioreactor. Fuel. 198:170–174. https://doi.org/10.1016/j.fuel.2016.11.046

    Article  Google Scholar 

  31. Khan MA, Ngo HH, Guo WS, Liu Y, Nghiem LD, Hai FI, Deng LJ, Wang J, Wu Y (2016) Optimization of process parameters for production of volatile fatty acid, biohydrogen and biomethane from anaerobic digestion. Bioresour Technol 219:738–748. https://doi.org/10.1016/j.biortech.2016.08.073

    Article  Google Scholar 

  32. Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ Microbiol 17(5):1533–1547. https://doi.org/10.1111/1462-2920.12576

    Article  Google Scholar 

  33. Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, de Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387. https://doi.org/10.1099/00207713-48-4-1383

    Article  Google Scholar 

  34. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov. sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556. https://doi.org/10.1099/00207713-49-2-545

    Article  Google Scholar 

  35. Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture and cytological properties of Syntrophobacter wolinii. FEMS Microbiol Lett 123:249–254. https://doi.org/10.1111/j.1574-6968.1994.tb07232.x

    Article  Google Scholar 

  36. Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324. https://doi.org/10.1099/ijs.0.63565-0

    Article  Google Scholar 

  37. Zellneri G, Busmann A, Rainey FA, Diekmann H (1996) A syntrophic propionate-oxidizing, sulfate-reducing bacterium from a fluidized bed reactor. Syst Appl Microbiol 19(3):414–420. https://doi.org/10.1016/S0723-2020(96)80071-3

    Article  Google Scholar 

  38. Hajarnis SR, Ranade DR (1994) Effect of propionate toxicity on some methanogens at different pH values and in combination with butyrate. Proceeding of 7th International Symposium on Aerobic Digestion. Cape Town, South Africa

  39. Den Boer E, Łukaszewska A, Kluczkiewicz W, Lewandowska D, King K, Reijonen T, Kuhmonen T, Jääskeläinen A, Heitto A, Laatikainen R, Hakalehto E (2016) Volatile fatty acids as an added value from biowaste. Waste Manag 58:62–69. https://doi.org/10.1016/j.wasman.2016.08.006

    Article  Google Scholar 

  40. Fei X, Zekkos D, Raskin L (2015) Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste. Waste Manag 36:184–190. https://doi.org/10.1016/j.wasman.2014.10.027

    Article  Google Scholar 

  41. Gomaa MA, Abed RMM (2017) Potential of fecal waste for the production of biomethane, bioethanol and biodiesel. J Biotechnol 253:14–22. https://doi.org/10.1016/j.jbiotec.2017.05.013

    Article  Google Scholar 

  42. Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406. https://doi.org/10.1111/1574-6976.12019

    Article  Google Scholar 

  43. Luo G, Angelidaki I (2014) Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and ion torrent sequencing. Water Res 60:156–163. https://doi.org/10.1016/j.watres.2014.04.047

    Article  Google Scholar 

  44. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sorensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626. https://doi.org/10.1111/1574-6941.12148

    Article  Google Scholar 

  45. Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102(4):3730–3739. https://doi.org/10.1016/j.biortech.2010.11.119

    Article  Google Scholar 

  46. Vartoukian SR, Palmer RM, Wade WG (2007) The division ‘Synergistes. Anaerobe. 13(3–4):99–106. https://doi.org/10.1016/j.anaerobe.2007.05.004

    Article  Google Scholar 

  47. Jumas-Bilak E, Roudiere L, Marchandin H (2009) Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes. Int J Syst Evol Microbiol 59(5):1028–1035. https://doi.org/10.1099/ijs.0.006718-0

    Article  Google Scholar 

  48. Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Viehover P, Puhler A, Runte KJ, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49. https://doi.org/10.1016/j.jbiotec.2009.02.010

    Article  Google Scholar 

  49. Juste-Poinapen NM, Turner MS, Rabaey K, Virdis B, Batstone DJ (2015) Evaluating the potential impact of proton carriers on syntrophic propionate oxidation. Sci Rep 5:18364. https://doi.org/10.1038/srep18364

    Article  Google Scholar 

  50. Yang L, Huang Y, Zhao M, Huang Z, Miao H, Xu Z, Ruan W (2015) Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int Biodeterior Biodegradation 105:153–159. https://doi.org/10.1016/j.ibiod.2015.09.005

    Article  Google Scholar 

  51. Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, Puhler A, Runte KJ, Schluter A, Stoye J, Tauch A, Goesmann A, Szczepanowski R (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136(1–2):91–101. https://doi.org/10.1016/j.jbiotec.2008.06.003

    Article  Google Scholar 

  52. Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattlewaste. Int J Syst Evol Microbiol 59(8):1901–1907. https://doi.org/10.1016/j.watres.2018.04.043

    Article  Google Scholar 

  53. Ueki A, Abe K, Kaku N, Watanabe K, Ueki K (2008) Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 58(2):346–352. https://doi.org/10.1099/ijs.0.65486-0

    Article  Google Scholar 

  54. Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012) Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol, AEM-06394 78:2106–2119. https://doi.org/10.1128/AEM.06394-11

    Article  Google Scholar 

  55. Campanaro S, Treu L, Kougias PG, Luo G, Angelidaki I (2018) Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Res 140:123–134. https://doi.org/10.1016/j.watres.2018.04.043

    Article  Google Scholar 

  56. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McInerney MJ (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microb 12(8):2289–2301. https://doi.org/10.1111/j.1462-2920.2010.02237.x

    Article  Google Scholar 

  57. Fuess LT, Garcia ML (2014) Implications of stillage land disposal: a critical review on the impacts of fertigation. J Environ Manag 145:210–229. https://doi.org/10.1016/j.jenvman.2014.07.003

    Article  Google Scholar 

  58. Garrity GM, Holt JG (2001) The road map to the manual. In: Bergey’s manual of systematic bacteriology. Springer New York, New York, pp 119–166

    Chapter  Google Scholar 

  59. Traversi D, Villa S, Acri M, Pietrangeli B, Degan R, Gilli G (2011) The role of different methanogen groups evaluated by real-time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express 1(1):28

    Article  Google Scholar 

  60. Wang P, Wang H, Qiu Y, Ren L, Jiang B (2017) Microbial characteristics in anaerobic digestion process of food waste for methane production–a review. Bioresour Technol 248:29–36. https://doi.org/10.1016/j.biortech.2017.06.152

    Article  Google Scholar 

  61. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. https://doi.org/10.1016/j.biortech.2012.02.079

    Article  Google Scholar 

  62. Raskin L, Zheng DD, Griffin ME, Stroot PG, Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Anton Leeuw 68:297–308

    Article  Google Scholar 

  63. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3(6):700–714. https://doi.org/10.1038/ismej.2009.2

    Article  Google Scholar 

  64. Tsushima I, Yoochatchaval W, Yoshida H, Araki N, Syutsubo K (2010) Microbial community structure and population dynamics of granules developed in expanded granular sludge bed (EGSB) reactors for the anaerobic treatment of low-strength wastewater at low temperature. J Environ Sci Heal A 45(6):754–766. https://doi.org/10.1080/10934521003651531

    Article  Google Scholar 

Download references

Acknowledgments

Luiz Gustavo dos Anjos Borges thanks PEGA/PUCRS. We also thank High-Performance Computing Lab - LAD/PUCRS for allowing access to run the high-throughput computational analyses.

Funding

This study was financially supported by the PETROBRAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suelen Paesi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 39 kb)

ESM 2

(XLSX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iltchenco, J., Almeida, L.G., Beal, L.L. et al. Microbial consortia composition on the production of methane from sugarcane vinasse. Biomass Conv. Bioref. 10, 299–309 (2020). https://doi.org/10.1007/s13399-019-00426-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00426-0

Keywords

Navigation