Skip to main content

Advertisement

Log in

Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, growing attention has been focused on the use of lignocellulosic biomass as a feedstock for the production of ethanol, a possible renewable alternative to fossil fuels. Several pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. In this study, effect of various organic solvents and organic acids on the pretreatment of sugarcane bagasse was studied. Among the different organic acids and organic solvents tested, formic acid was found to be effective. Optimization of process parameters for formic acid pretreatment was carried out. The structural changes before and after pretreatment was investigated by scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was more for pretreated biomass than that of untreated. The FTIR spectra shown at the stretching of hydrogen bonds of pretreated sugarcane bagasse arose at higher number. It also revealed that the cellulose content in the solid residue increased because the hemicelluloses fraction in raw materials was released by acid hydrolytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pandey, A., Biswas, S., Sukumaran, R. K., & Kaushik, N. (2009). Study on availability of Indian biomass resources for exploitation: a report based on a nation-wise survey. New Delhi: Published by TIFAC.

    Google Scholar 

  2. Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U., Sajna, K. V., et al. (2010). Bioresource Technology, 101(14), 4767–4774.

    Google Scholar 

  3. Bryant, C., & Yassumoto, W. Y. (2009). International Sugar Journal, 111, 696–700.

    Google Scholar 

  4. Gamez, S., Gonzales-Cabrialez, J. J., Ramirez, J. A., Garrote, G., & Vazquez, M. (2006). Journal of Food Engineering, 74, 78–88.

    Article  CAS  Google Scholar 

  5. Rabelo, S. C., Maciel, R., & Costa, A. C. (2009). Applied Biochemistry and Biotechnology, 153, 139–150.

    Article  CAS  Google Scholar 

  6. Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Y. (1991). Applied Biochemistry and Biotechnology, 30, 43–59.

    Article  CAS  Google Scholar 

  7. Martın, C., & Thomsen, A. B. (2007). Journal of Chemical Technology and Biotechnology, 82, 174–181.

    Article  Google Scholar 

  8. Patel, S. J., Onkarappa, R., & Shobha, K. S. (2007). Electronic Journal of Environmental Agricultural and Food Chemistry, 6, 1921–1926.

    Google Scholar 

  9. Araque, E., Parra, C., Freer, J., Contreras, D., Rodriguez, J., Mendonca, R., et al. (2008). Enzyme and Microbial Technology, 43, 214–219.

    Article  CAS  Google Scholar 

  10. Argyropoulos, D., & Argyropoulos, D. S. (2008). US Patent No. US2008190013-A1.

  11. Zhao, X. B., Cheng, K. K., & Liu, D. H. (2009). Applied Microbiology and Biotechnology, 82, 815–827.

    Article  CAS  Google Scholar 

  12. Carrasco, C., Baudel, H. M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., et al. (2010). Enzyme and Microbial Technology, 46, 64–73.

    Article  CAS  Google Scholar 

  13. Muurinen, E. (2000). Department of Process, Engineering, University of Oulu, FIN-90014 University of Oulu, Finland.

  14. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). Journal of Biotechnology, 139, 300–305.

    Article  CAS  Google Scholar 

  15. Sun, Y., Lin, L., Deng, H. B., Li, J. Z., He, B. H., Sun, R. C., et al. (2008). Bioresources, 3, 297–315.

    CAS  Google Scholar 

  16. Sun, Y., Lin, L., Pang, C. S., Deng, H. B., Peng, H., Li, J. Z., et al. (2007). Energy & Fuels, 21, 2386–2389.

    Article  CAS  Google Scholar 

  17. Li, H., Kim, N. J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Bioresource Technology, 100, 3245–3251.

    Article  CAS  Google Scholar 

  18. Itoh, H., Wada, M., Honda, Y., Kuwahara, M., & Watanabe, T. (2003). Journal of Biotechnology, 103, 273–280.

    Article  CAS  Google Scholar 

  19. Sun, F., & Chen, H. Z. (2008). Bioresource Technology, 99, 5474–5479.

    Article  CAS  Google Scholar 

  20. McDonough, T. J. (1993). Tappi Journal, 76, 186–193.

    CAS  Google Scholar 

  21. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  22. Segal, L., Greely, J. J., Martin, A. E. J., & Conrad, L. M. (1959). Textile Research Journal, 29, 780–794.

    Article  Google Scholar 

  23. Zhou, D., Zhang, L., & Guo, S. (2005). Water Research, 39, 3755–3762.

    Article  CAS  Google Scholar 

  24. Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., et al. (2005). Carbohydrate Research, 340, 2376–2391.

    Article  CAS  Google Scholar 

  25. Miller, G. M. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  26. Aswathy, U. S., Sukumaran, R. K., Devi, G. L., Rajasree, K. P., Singhania, R. R., & Pandey, A. (2010). Bioresource Technology, 101, 925–930.

    Article  CAS  Google Scholar 

  27. Sukumaran, R., Singhania, R. R., Mathew, G., & Pandey, A. (2009). Renewable Energy, 34, 421–424.

    Article  CAS  Google Scholar 

  28. Wang, L., Han, G., & Zhang, Y. (2007). Carbohydrate Polymers, 69, 391–397.

    Article  CAS  Google Scholar 

  29. Pandey, K. K. (2005). Polymer Degradation and Stability, 90, 9–20.

    Article  CAS  Google Scholar 

  30. Cao, Y., & Tan, H. (2004). Journal of Molecular Structure, 705, 189–193.

    Article  CAS  Google Scholar 

  31. Colom, X., & Carrillo, F. (2002). European Polymer Journal, 38, 2225–2230.

    Article  CAS  Google Scholar 

  32. Oh, S. Y., Yoo, D. I., Shin, Y., & Seo, G. (2005). Carbohydrate Research, 340, 417–428.

    Article  CAS  Google Scholar 

  33. Hsu, T.,Gua, G.,Chen, W., & Hwang, W. (2009). Bioresource Technology, (in press).

  34. Bak, S. J., Ja, K. K., Young, H. H., Byung, C. L., In-Geol, C., & Heon, K. K. (2009). Bioresource Technology, 100, 1285–1290.

    Article  CAS  Google Scholar 

  35. Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I.-G., Kim, T. H., et al. (2009). Bioresource Technology, 100, 4374–4380.

    Article  CAS  Google Scholar 

  36. Mantanis, G. I., Young, R. A., & Rowell, R. M. (1995). Cellulose, 2, 1–22.

    CAS  Google Scholar 

  37. Binod, P., Sindhu, R., Singhania, R. R., Surender, J. S., Devi, L., Nagalakshmi, S., et al. (2010). Bioresource Technology, 101(14), 4826–4833.

    Google Scholar 

  38. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). Journal of Microbiology and Biotechnology, 19, 845–850.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Technology Information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, Government of India, and Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support to the Centre for Biofuels at NIIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sindhu, R., Binod, P., Satyanagalakshmi, K. et al. Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol. Appl Biochem Biotechnol 162, 2313–2323 (2010). https://doi.org/10.1007/s12010-010-9004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9004-2

Keywords

Navigation