Skip to main content

Advertisement

Log in

Towards first-principles based kinetic modeling of biomass fast pyrolysis

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomass conversion to chemicals and fuels through fast pyrolysis shows great potential but requires a more fundamental approach for its deployment. To this end, molecular-based kinetic modeling is starting to play a central role in the prediction of the molecular composition of bio-oil. A molecular-level representation of biomass provides the start point for the generation of detailed pyrolysis reaction networks for both the condensed and the gas phases. Significant progress has been made for cellulose, glucose-based carbohydrates, and lignin, together with the incorporation of the catalytic effects of minerals. Ab initio techniques are widely used to discriminate between reaction mechanisms and to calculate kinetic parameters. Automatic kinetic model generation is expected to play an even more important role in fast pyrolysis as it does already today. Experimental techniques enabled to obtain intrinsic kinetics and to decouple the timescales between reaction kinetics and analytic techniques. This greatly benefits the improvement of detailed kinetic models. The prospects for achieving a first-principles based kinetic model of biomass fast pyrolysis are promising. However, significant work is still needed to couple condensed- and gas-phase reaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARM:

Attribute reaction modeling

CDK:

Continuous distribution kinetics

CPD:

Chemical percolation devolatilization

DFT:

Density functional theory

E a :

Activation energy (J mol−1)

FT-NIR:

Fourier-transform near infrared

GENESYS:

Generation of reacting systems

GPC:

Gel permeation chromatography

GSVR:

Gas-solid vortex reactor

HPLC:

High-performance liquid chromatography

INGen:

Interactive network generator

k :

Reaction pre-exponential factor (s−1)

LFER:

Linear free energy relationship

MMD:

Molar mass distribution

M n :

Number average molar mass (g mol−1)

M w :

Weight-average molar mass (g mol−1)

NMR:

Nuclear magnetic resonance

PDF:

Probability distribution function

PHASR:

Pulse-heated analysis of solid reactions

PLS:

Partial least square

RING:

Rule input network generator

RMG:

Reaction mechanism generator

SVUV-PIMS:

Synchrotron vacuum ultraviolet photoionization mass spectrometry

References

  1. Shen D, Jin W, Hu J, Xiao R, Luo K (2015) An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sust Energ Rev 51:761–774. doi:10.1016/j.rser.2015.06.054

    Article  Google Scholar 

  2. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu J, Henriksson G, Himmel ME, Hu L (2016a) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. doi:10.1021/acs.chemrev.6b00225

    Article  Google Scholar 

  3. Howe D, Westover T, Carpenter D, Santosa D, Emerson R, Deutch S, Starace A, Kutnyakov I, Lukins C (2015) Field-to-fuel performance testing of lignocellulosic feedstocks: an integrated study of the fast pyrolysis−hydrotreating pathway. Energy Fuel 29:3188–3197. doi:10.1021/acs.energyfuels.5b00304

    Article  Google Scholar 

  4. Toraman HE, Vanholme R, Borén E, Vanwonterghem Y, Djokic MR, Yildiz G, Ronsse F, Prins W, Boerjan W, Van Geem KM, Marin GB (2016) Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds. Bioresour Technol 207:229–236. doi:10.1016/j.biortech.2016.02.022

    Article  Google Scholar 

  5. Gonzalez-Quiroga A, Djokic MR, Van Geem KM, Marin GB (2016) Conversion of solid waste to diesel via catalytic pressureless depolymerization: pilot scale production and detailed compositional characterization. Energy Fuel 30:8292–8303. doi:10.1021/acs.energyfuels.6b016

    Article  Google Scholar 

  6. Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefin 4:178–208. doi:10.1002/bbb

    Article  Google Scholar 

  7. Mettler MS, Vlachos DG, Dauenhauer PJ (2012a) Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci 5:7797–7809. doi:10.1039/c2ee21679e

    Article  Google Scholar 

  8. Anca-couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79. doi:10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  9. Klein MT, Hou G, Bertolacini R, Broadbelt LJ, Kumar A (2006) Molecular modeling in heavy hydrocarbon conversions. CRC Press, Boca Raton

    Google Scholar 

  10. Dahmen M, Marquardt W (2016) Model-based design of tailor-made biofuels. Energy Fuel 30:1109–1134. doi:10.1021/acs.energyfuels.5b02674

    Article  Google Scholar 

  11. Van de Vijver R, Devocht BR, Van Geem KM, Thybaut JW, Marin GB (2016) Challenges and opportunities for molecule-based management of chemical processes. Curr Opin Chem Eng 13:142–149. doi:10.1016/j.coche.2016.09.006

    Article  Google Scholar 

  12. Pollex A, Ortwein A, Kaltschmitt M (2012) Thermo-chemical conversion of solid biofuels. Biomass Convers Biorefin 2:21–39. doi:10.1007/s13399-011-0025-z

    Article  Google Scholar 

  13. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. doi:10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  14. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. doi:10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  15. Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613. doi:10.1007/s10570-015-0586-2

    Article  Google Scholar 

  16. Zhou X, Li W, Mabon R, Broadbelt LJ (2016a) A critical review on hemicellulose pyrolysis. Energy Technol 4:1–29. doi:10.1002/ente.201600327

    Article  Google Scholar 

  17. Wang S, Lin H, Zhang L, Dai G, Zhao Y, Wang X, Ru B (2016a) Structural characterization and pyrolysis behavior of cellulose and hemicellulose isolated from softwood Pinus armandii Franch. Energy Fuel 30:5721–5728. doi:10.1021/acs.energyfuels.6b00650

    Article  Google Scholar 

  18. Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200. doi:10.1016/j.copbio.2015.10.009

    Article  Google Scholar 

  19. Yanez AJ, Li W, Mabon R, Broadbelt LJ (2016) A stochastic method to generate libraries of structural representations of lignin. Energy Fuel 30:5835–5845. doi:10.1021/acs.energyfuels.6b00966

    Article  Google Scholar 

  20. Hou Z, Bennett CA, Klein MT, Virk PS (2010) Approaches and software tools for modeling lignin pyrolysis. Energy Fuel 24:58–67. doi:10.1021/ef900488k

    Article  Google Scholar 

  21. Debiagi PEA, Pecchi C, Gentile G, Frassoldati A, Cuoci A, Faravelli T, Ranzi E (2015) Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy Fuel 29:6544–6555. doi:10.1021/acs.energyfuels.5b01753

    Article  Google Scholar 

  22. Horton SR, Mohr RJ, Zhang Y, Petrocelli FP, Klein MT (2016a) Molecular-level kinetic modeling of biomass gasification. Energy Fuel 30:1647–1661. doi:10.1021/acs.energyfuels.5b01988

    Article  Google Scholar 

  23. Van Geem KM, Hudebine D, Reyniers MF, Wahl F, Verstraete JJ, Marin GB (2007) Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices. Comput Chem Eng 31:1020–1034. doi:10.1016/j.compchemeng.2006.09.001

    Article  Google Scholar 

  24. Pyl SP, Hou Z, Van Geem KM, Reyniers M-F, Marin GB, Klein MT (2011) Modeling the composition of crude oil fractions using constrained homologous series. Ind Eng Chem Res 50:10850–10858. doi:10.1021/ie200583t

    Article  Google Scholar 

  25. Venderbosch R (2015) A critical view on catalytic pyrolysis of biomass. ChemSusChem 8:1306–1316. doi:10.1002/cssc.201500115

    Article  Google Scholar 

  26. Wiggins GM, Ciesielski PN, Daw CS (2016) Low-order modeling of internal heat transfer in biomass particle pyrolysis. Energy Fuel 30:4960–4969. doi:10.1021/acs.energyfuels.6b00554

    Article  Google Scholar 

  27. Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, Melkior T, Ranzi E, Fisher EM (2014) Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation. Energy Fuel 28:3884–3898. doi:10.1021/ef500525v

    Article  Google Scholar 

  28. Xiong Q, Kong S, Passalacqua A (2013) Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors. Chem Eng Sci 99:305–313. doi:10.1016/j.ces.2013.06.017

    Article  Google Scholar 

  29. Ranzi E, Corbetta M, Manenti F, Pierucci S (2014) Kinetic modeling of the thermal degradation and combustion of biomass. Chem Eng Sci 110:2–12. doi:10.1016/j.ces.2013.08.014

    Article  Google Scholar 

  30. Papari S, Hawboldt K (2015) A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sust Energ Rev 52:1580–1595. doi:10.1016/j.rser.2015.07.191

    Article  Google Scholar 

  31. Wang S, Ru B, Lin H, Dai G, Wang Y, Luo Z (2016b) Kinetic study on pyrolysis of biomass components: a critical review. Curr Org Chem 20:2489–2513. doi:10.2174/1385272820666160525115832

    Google Scholar 

  32. Van de Vijver R, Vandewiele NM, Bhoorasingh PL, Slakman BL, Seyedzadeh Khanshan F, Carstensen HH, Reyniers MF, Marin GB, West RH, Van Geem KM (2015) Automatic mechanism and kinetic model generation for gas-and solution-phase processes: a perspective on best practices, recent advances, and future challenges. In J Chem Kinet 47:199–231. doi:10.1002/kin.20902

    Article  Google Scholar 

  33. Gu GH, Vlachos DG (2016) Group additivity for thermochemical property estimation of lignin monomers on Pt (111). J Phys Chem C 120:19234–19241. doi:10.1021/acs.jpcc.6b06430

    Article  Google Scholar 

  34. Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012b) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424. doi:10.1039/c1ee02743c

    Article  Google Scholar 

  35. Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrolysis 84:1–17. doi:10.1016/j.jaap.2008.10.014

    Article  Google Scholar 

  36. Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28:3108–3114. doi:10.1021/acs.chemmater.6b00580

    Article  Google Scholar 

  37. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuel 22:4292–4300. doi:10.1021/ef800551t

    Article  Google Scholar 

  38. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053. doi:10.1021/jf1008023

    Article  Google Scholar 

  39. Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem 58:9054–9062. doi:10.1021/jf100807b

    Article  Google Scholar 

  40. Bhagia S, Nunez A, Wyman CE, Kumar R (2016) Robustness of two-step acid hydrolysis procedure for composition analysis of poplar. Bioresource Technol 216:1077–1082. doi:10.1016/j.biortech.2016.04.138

    Article  Google Scholar 

  41. Whitfield MB, Chinn MS, Veal MW (2016) Improvement of acid hydrolysis procedures for the composition analysis of herbaceous biomass. Energy Fuel 30:8260–8269. doi:10.1021/acs.energyfuels.6b01390

    Article  Google Scholar 

  42. Sheng C, Azevedo J (2002) Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components. Proc Combust Inst 29:407–414. doi:10.1016/S1540-7489(02)80054-2

    Article  Google Scholar 

  43. Fletcher TH, Pond HR, Webster J, Wooters J, Baxter LL (2012) Prediction of tar and light gas during pyrolysis of black liquor and biomass. Energy Fuel 26:3381–3387. doi:10.1021/ef300574n

    Article  Google Scholar 

  44. Lewis AD, Fletcher TH (2013) Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model. Energy Fuel 27:942–953. doi:10.1021/ef3018783

    Article  Google Scholar 

  45. Anca-Couce A, Obernberger I (2016) Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel 167:158–167. doi:10.1016/j.fuel.2015.11.062

    Article  Google Scholar 

  46. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34:290–301. doi:10.1016/j.biombioe.2009.10.018

    Article  Google Scholar 

  47. Hough BR, Schwartz DT, Pfaendtner J (2016) Detailed kinetic modeling of lignin pyrolysis for process optimization. Ind Eng Chem Res 55:9147–9153. doi:10.1021/acs.iecr.6b02092

    Article  Google Scholar 

  48. Blondeau J, Jeanmart H (2012) Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy 41:107–121. doi:10.1016/j.biombioe.2012.02.016

    Article  Google Scholar 

  49. Flory PJ (1936) Molecular size distribution in linear condensation polymers. J Am Chem Soc 58:1877–1885. doi:10.1021/ja01301a016

    Article  Google Scholar 

  50. Horton SR, Zhang Y, Mohr R, Petrocelli FP, Klein MT (2016b) Implementation of a molecular-level kinetic model for plasma-arc municipal solid waste gasification. Energy Fuels doi. doi:10.1021/acs.energyfuels.6b00899

  51. Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer, Berlin

    Book  Google Scholar 

  52. Klein M, Virk P (2008) Modeling of lignin thermolysis. Energy Fuel 22:2175–2182. doi:10.1021/ef800285f

    Article  Google Scholar 

  53. Vinu R, Broadbelt LJ (2012a) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826. doi:10.1039/C2EE22784C

    Article  Google Scholar 

  54. Mayes HB, Broadbelt LJ (2012) Unraveling the reactions that unravel cellulose. J Phys Chem A 116:7098–7106. doi:10.1021/jp300405x

    Article  Google Scholar 

  55. Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014a) The alpha–bet(a) of glucose pyrolysis: computational and experimental investigations of 5-hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustain Chem Eng 2:1461–1473. doi:10.1021/sc500113m

    Article  Google Scholar 

  56. Zhou X, Nolte MW, Mayes HB, Shanks BH, Broadbelt LJ (2014a) Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 1. Experiments and development of a detailed mechanistic model. Ind Eng Chem Res 53:13274–13289. doi:10.1021/ie502259w

    Article  Google Scholar 

  57. Zhou X, Nolte MW, Shanks BH, Broadbelt LJ (2014b) Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 2. Validation and evaluation of the mechanistic model. Ind Eng Chem Res 53:13290–13301. doi:10.1021/ie502260q

    Article  Google Scholar 

  58. Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014b) The alpha–bet(a) of salty glucose pyrolysis: computational investigations reveal carbohydrate pyrolysis catalytic action by sodium ions. ACS Catal 5:192–202. doi:10.1021/cs501125n

    Article  Google Scholar 

  59. Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH (2016b) Fast pyrolysis of glucose-based carbohydrates with added NaCl part 1: experiments and development of a mechanistic model. AICHE J 62:766–777. doi:10.1002/aic.15106

    Article  Google Scholar 

  60. Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH (2016c) Fast pyrolysis of glucose-based carbohydrates with added NaCl part 2: validation and evaluation of the mechanistic model. AICHE J 62:778–791. doi:10.1002/aic.15107

    Article  Google Scholar 

  61. Kodera Y, McCoy BJ (1997) Distribution kinetics of radical mechanisms: reversible polymer decomposition. AICHE J 43:3205–3214. doi:10.1002/aic.690431208

    Article  Google Scholar 

  62. Trendewicz A, Evans R, Dutta A, Sykes R, Carpenter D, Braun R (2015) Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy 74:15–25. doi:10.1016/j.biombioe.2015.01.001

    Article  Google Scholar 

  63. Zhou X, Broadbelt L, Vinu R (2016d) Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem KM (ed) Advances in chemical engineering. Elsevier, Cambridge, pp 96–198

    Google Scholar 

  64. Wei W, Bennett CA, Tanaka R, Hou G, Klein MT (2008) Computer aided kinetic modeling with KMT and KME. Fuel Process Technol 89:350–363. doi:10.1016/j.fuproc.2007.11.015

    Article  Google Scholar 

  65. Horton SR, Woeckener J, Mohr R, Zhang Y, Petrocelli F, Klein MT (2015) Molecular-level kinetic modeling of the gasification of common plastics. Energy Fuel 30:1662–1674. doi:10.1021/acs.energyfuels.5b02047

    Article  Google Scholar 

  66. Thimthong N, Appari S, Tanaka R, Iwanaga K, Kudo S, J-i H, Shoji T, Norinaga K (2015) Kinetic modeling of non-catalytic partial oxidation of nascent volatiles derived from fast pyrolysis of woody biomass with detailed chemistry. Fuel Process Technol 134:159–167. doi:10.1016/j.fuproc.2015.01.029

    Article  Google Scholar 

  67. Yang H, Appari S, Kudo S, J-i H, Norinaga K (2015) Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin. Ind Eng Chem Res 54:6855–6864. doi:10.1021/acs.iecr.5b01289

    Article  Google Scholar 

  68. Custodis VB, Hemberger P, Ma Z, van Bokhoven JA (2014) Mechanism of fast pyrolysis of lignin: studying model compounds. J Phys Chem B 118:8524–8531. doi:10.1021/jp5036579

    Article  Google Scholar 

  69. He T, Zhang Y, Zhu Y, Wen W, Pan Y, Wu J, Wu J (2016) Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry. Energy Fuel 30:2204–2208. doi:10.1021/acs.energyfuels.5b02635

    Article  Google Scholar 

  70. Calonaci M, Grana R, Barker Hemings E, Bozzano G, Dente M, Ranzi E (2010) Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuel 24:5727–5734. doi:10.1021/ef1008902

    Article  Google Scholar 

  71. Dupont C, Chen L, Cances J, Commandre J, Cuoci A, Pierucci S, Ranzi E (2009) Biomass pyrolysis: kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J Anal Appl Pyrolysis 85:260–267. doi:10.1016/j.jaap.2008.11.034

    Article  Google Scholar 

  72. Manenti F, Adani F, Rossi F, Bozzano G, Pirola C (2016) First-principles models and sensitivity analysis for the lignocellulosic biomass-to-methanol conversion process. Comput Chem Eng 84:558–567. doi:10.1016/j.compchemeng.2015.05.012

    Article  Google Scholar 

  73. Mellin P, Kantarelis E, Zhou C, Yang W (2014) Simulation of bed dynamics and primary products from fast pyrolysis of biomass: steam compared to nitrogen as a fluidizing agent. Ind Eng Chem Res 53:12129–12142. doi:10.1021/ie501996v

    Article  Google Scholar 

  74. Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T (2001) Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog Energy Combust Sci 27:99–139. doi:10.1016/S0360-1285(00)00013-7

    Article  Google Scholar 

  75. Debiagi PEA, Gentile G, Pelucchi M, Frassoldati A, Cuoci A, Faravelli T, Ranzi E (2016) Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis. Biomass Bioenergy 93:60–71. doi:10.1016/j.biombioe.2016.06.015

    Article  Google Scholar 

  76. Norinaga K, Shoji T, Kudo S, Hayashi J (2013) Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel 103:141–150. doi:10.1016/j.fuel.2011.07.045

    Article  Google Scholar 

  77. Norinaga K, Yang H, Tanaka R, Appari S, Iwanaga K, Takashima Y, Kudo S, Shoji T, Hayashi J (2014) A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking. Biomass Bioenergy 69:144–154. doi:10.1016/j.biombioe.2014.07.008

    Article  Google Scholar 

  78. Lifshitz A, Tamburu C, Shashua R (1998) Thermal decomposition of 2, 5-dimethylfuran. Experimental results and computer modeling. J Phys Chem A 102:10655–10670. doi:10.1021/jp982772b

    Article  Google Scholar 

  79. Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. In J Chem Kinet 31:183–220. doi:10.1002/(SICI)1097-4601

    Article  Google Scholar 

  80. Richter H, Howard JB (2002) Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phy Chem Chem Phys 4:2038–2055. doi:10.1039/B110089K

    Article  Google Scholar 

  81. Sheng CY, Dean AM (2004) Importance of gas-phase kinetics within the anode channel of a solid-oxide fuel cell. J Phys Chem A 108:3772–3783. doi:10.1021/jp037839w

    Article  Google Scholar 

  82. Gao CW, Allen JW, Green WH, West RH (2016) Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Comp Phys Commun 203:212–225. doi:10.1016/j.cpc.2016.02.013

    Article  Google Scholar 

  83. Van Geem KM, Reyniers MF, Marin GB, Song J, Green WH, Matheu DM (2006) Automatic reaction network generation using RMG for steam cracking of n-hexane. AICHE J 52:718–730. doi:10.1002/aic.10655

    Article  Google Scholar 

  84. Seyedzadeh Khanshan F, West RH (2016) Developing detailed kinetic models of syngas production from bio-oil gasification using reaction mechanism generator (RMG). Fuel 163:25–33. doi:10.1016/j.fuel.2015.09.031

    Article  Google Scholar 

  85. Vandewiele NM, Van Geem KM, Reyniers M-F, Marin GB (2012) Genesys: kinetic model construction using chemo-informatics. Chem Eng J 207:526–538. doi:10.1016/j.cej.2012.07.014

    Article  Google Scholar 

  86. Rangarajan S, Bhan A, Daoutidis P (2012) Language-oriented rule-based reaction network generation and analysis: description of RING. Comput Chem Eng 45:114–123. doi:10.1016/j.compchemeng.2012.06.008

    Article  Google Scholar 

  87. Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32. doi:10.1016/j.jaap.2011.12.019

    Article  Google Scholar 

  88. Zhang X, Yang W, Dong C (2013) Levoglucosan formation mechanisms during cellulose pyrolysis. J Anal Appl Pyrolysis 104:19–27. doi:10.1016/j.jaap.2013.09.015

    Article  Google Scholar 

  89. Burnham AK, Zhou X, Broadbelt LJ (2015) Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuel 29:2906–2918. doi:10.1021/acs.energyfuels.5b00350

    Article  Google Scholar 

  90. Vinu R, Broadbelt LJ (2012b) Unraveling reaction pathways and specifying reaction kinetics for complex systems. Annu Rev Chem Biomol Eng 3:29–54. doi:10.1146/annurev-chembioeng-062011-081108

    Article  Google Scholar 

  91. Assary RS, Curtiss LA (2012) Thermochemistry and reaction barriers for the formation of levoglucosenone from cellobiose. ChemCatChem 4:200–205. doi:10.1002/cctc.201100280

    Article  Google Scholar 

  92. Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S (2009) Thermal degradation of methyl β-d-Glucoside. A Theoretical Study of Plausible Reaction Mechanisms J Org Chem 74:6891–6894. doi:10.1021/jo900457k

    Google Scholar 

  93. Carstensen H-H, Dean AM (2010) Development of detailed kinetic models for the thermal conversion of biomass via first principle methods and rate estimation rules. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production. ACS, Oxford, pp 201–243

    Chapter  Google Scholar 

  94. Seshadri V, Westmoreland PR (2012) Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J Phys Chem A 116:11997–12013. doi:10.1021/jp3085099

    Article  Google Scholar 

  95. Nimlos MR, Blanksby SJ, Ellison GB, Evans RJ (2003) Enhancement of 1,2-dehydration of alcohols by alkali cations and protons: a model for dehydration of carbohydrates. J Anal Appl Pyrolysis 66:3–27. doi:10.1016/S0165-2370(02)00103-1

    Article  Google Scholar 

  96. Mushrif SH, Vasudevan V, Krishnamurthy CB, Venkatesh B (2015) Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: a perspective. Chem Eng Sci 121:217–235. doi:10.1016/j.ces.2014.08.019

    Article  Google Scholar 

  97. Bell RP (1936) The theory of reactions involving proton transfers. Proc R Soc Ser A 154:414–429. doi:10.1098/rspa.1936.0060

    Google Scholar 

  98. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894. doi:10.1039/TF9353100875

    Article  Google Scholar 

  99. Benson SW, Buss JH (1958) Additivity rules for the estimation of molecular properties. Thermodynamic properties. J Chem Phys 29:546–572. doi:10.1063/1.1744539

    Article  Google Scholar 

  100. Magoon GR, Green WH (2013) Design and implementation of a next-generation software interface for on-the-fly quantum and force field calculations in automated reaction mechanism generation. Comput Chem Eng 52:35–45. doi:10.1016/j.compchemeng.2012.11.009

    Article  Google Scholar 

  101. Mettler MS, Paulsen AD, Vlachos DG, Dauenhauer PJ (2012c) The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chem 14:1284–1288. doi:10.1039/c2gc35184f

    Article  Google Scholar 

  102. Paulsen AD, Mettler MS, Dauenhauer PJ (2013) The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuel 27:2126–2134. doi:10.1021/ef302117j

    Article  Google Scholar 

  103. Zhu C, Maduskar S, Paulsen AD, Dauenhauer PJ (2016b) Alkaline-earth-metal-catalyzed thin-film pyrolysis of cellulose. ChemCatChem doi. doi:10.1002/cctc.201501235

  104. Westerhof R, Oudenhoven S, Marathe P, Engelen M, Garcia-Perez M, Wang Z, Kersten S (2016) The interplay between chemistry and heat/mass transfer during the fast pyrolysis of cellulose. React Chem Eng 1:555–566. doi:10.1039/c6re00100a

    Article  Google Scholar 

  105. Ashcraft RW, Heynderickx GJ, Marin GB (2012) Modeling fast biomass pyrolysis in a gas–solid vortex reactor. Chem Eng J 207:195–208. doi:10.1016/j.cej.2012.06.048

    Article  Google Scholar 

  106. Kovacevic JZ, Pantzali MN, Heynderickx GJ, Marin GB (2014) Bed stability and maximum solids capacity in a gas–solid vortex reactor: experimental study. Chem Eng Sci 106:293–303. doi:10.1016/j.ces.2013.11.018

    Article  Google Scholar 

  107. Kovacevic JZ, Pantzali MN, Niyogi K, Deen NG, Heynderickx GJ, Marin GB (2015) Solids velocity fields in a cold-flow gas–solid vortex reactor. Chem Eng Sci 123:220–230. doi:10.1016/j.ces.2014.10.020

    Article  Google Scholar 

  108. Gonzalez Quiroga A, Carstensen H-H, Van Geem KM, Marin GB (2016) Design of a gas-solid vortex reactor demonstration unit for the fast pyrolysis of lignocellulosic biomass. in: 21st International Symposium on Analytical and Applied Pyrolysis (PYRO 2016), Nancy, pp. 181–181

  109. Jia L, Le Brech Y, Mauviel G, Qi F, Bente-von Frowein M, Ehlert S, Zimmermann R, Dufour A (2016) Online analysis of biomass pyrolysis tar by photoionization mass spectrometry. Energy Fuel 30:1555–1563. doi:10.1021/acs.energyfuels.5b02274

    Article  Google Scholar 

  110. Wang Y, Zhu Y, Zhou Z, Yang J, Pan Y, Qi F (2016c) Pyrolysis study on solid fuels: from conventional analytical methods to synchrotron vacuum ultraviolet photoionization mass spectrometry. Energy Fuel 30:1534–1543. doi:10.1021/acs.energyfuels.5b02234

    Article  Google Scholar 

  111. Lu Q, Tian H-y HB, X-y J, Dong C-q, Yang Y-p (2016) Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde. J Anal Appl Pyrolysis 120:15–26. doi:10.1016/j.jaap.2016.04.003

    Article  Google Scholar 

  112. Djokic MR, Dijkmans T, Yildiz G, Prins W, van Geem KM (2012) Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography. J Chromatogr A 1257:131–140. doi:10.1016/j.chroma.2012.07.035

    Article  Google Scholar 

  113. Negahdar L, Gonzalez-Quiroga A, Otyuskaya D, Toraman HE, Liu L, Jastrzebski JTBH, Van Geem KM, Marin GB, Thybaut JW, Weckhuysen BM (2016) Characterization and comparison of fast pyrolysis bio-oils from pinewood, rapeseed cake, and wheat straw using 13C NMR and comprehensive GC× GC. ACS Sustain Chem Eng 4:4974–4985. doi:10.1021/acssuschemeng.6b01329

    Article  Google Scholar 

  114. Michailof CM, Kalogiannis KG, Sfetsas T, Patiaka DT, Lappas AA (2016) Advanced analytical techniques for bio-oil characterization. Wiley Interdiscip Rev: Energy Environ doi. doi:10.1002/wene.208

  115. Tomasini D, Cacciola F, Rigano F, Sciarrone D, Donato P, Beccaria M, Caramão EB, Dugo P, Mondello L (2014) Complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. Anal Chem 86:11255–11262. doi:10.1021/ac5038957

    Article  Google Scholar 

  116. Ben H, Ragauskas AJ (2012) In situ NMR characterization of pyrolysis oil during accelerated aging. ChemSusChem 5:1687–1693. doi:10.1002/cssc.201200429

    Article  Google Scholar 

  117. Gjersing E, Happs RM, Sykes RW, Doeppke C, Davis MF (2013) Rapid determination of sugar content in biomass hydrolysates using nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 110:721–728. doi:10.1002/bit.24741

    Article  Google Scholar 

  118. Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. doi:10.1016/j.biombioe.2010.08.067

    Article  Google Scholar 

  119. Yoo C, Ragauskas AJ (2016) Analysis of biomass, today and tomorrow. Ann Chromatogr Sep Tech 2:1–2

    Google Scholar 

  120. Wang S, Ru B, Dai G, Sun W, Qiu K, Zhou J (2015a) Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples. Bioresource Technol 190:211–218. doi:10.1016/j.biortech.2015.04.098

    Article  Google Scholar 

  121. Costa G, Plazanet I (2016) Plant cell wall, a challenge for its characterisation. Adv Biol Chem 6:70. doi:10.4236/abc.2016.63008

    Article  Google Scholar 

  122. Wang S, Ru B, Lin H, Sun W, Luo Z (2015b) Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource Technol 182:120–127. doi:10.1016/j.biortech.2015.01.127

    Article  Google Scholar 

  123. Constant S, Wienk HL, Frissen AE, de Peinder P, Boelens R, van Es DS, Grisel RJ, Weckhuysen BM, Huijgen WJ, Gosselink RJ (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18:2651–2665. doi:10.1039/c5gc03043a

    Article  Google Scholar 

  124. Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohyd Polym 81:820–829. doi:10.1016/j.carbpol.2010.03.058

    Article  Google Scholar 

  125. Kline LM, Labbé N, Boyer C, Yu TE, English BC, Larson JA (2016) Investigating the impact of biomass quality on near-infrared models for switchgrass feedstocks. Bioengineering 3:1–22. doi:10.3934/bioeng.2016.1.1

    Google Scholar 

  126. Lupoi JS, Singh S, Davis M, Lee DJ, Shepherd M, Simmons BA, Henry RJ (2014a) High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnol Biofuels 7:1. doi:10.1186/1754-6834-7-93

    Article  Google Scholar 

  127. Lupoi JS, Singh S, Simmons BA, Henry RJ (2014b) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. BioEnergy Res 7:1–23. doi:10.1007/s12155-013-9352-1

    Article  Google Scholar 

  128. Lupoi JS (2015) Analytical methods for lignocellulosic biomass structural polysaccharides. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides. Springer, Basel, pp 1121–1180

    Chapter  Google Scholar 

  129. Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906. doi:10.1016/j.rser.2015.04.091

    Article  Google Scholar 

  130. Payne CE, Wolfrum EJ (2015) Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnol Biofuels 8:1. doi:10.1186/s13068-015-0222-2

    Article  Google Scholar 

  131. Foston M, Samuel R, He J, Ragauskas AJ (2016) A review of whole cell wall NMR by the direct-dissolution of biomass. Green Chem 18:608–621. doi:10.1039/C5GC02828K

    Article  Google Scholar 

  132. Engel P, Hein L, Spiess AC (2012) Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnol Biofuels 5:1. doi:10.1186/1754-6834-5-77

    Article  Google Scholar 

  133. Oberlerchner JT, Rosenau T, Potthast A (2015) Overview of methods for the direct molar mass determination of cellulose. Molecules 20:10313–10341. doi:10.3390/molecules200610313

    Article  Google Scholar 

  134. Ono Y, Tanaka R, Funahashi R, Takeuchi M, Saito T, Isogai A (2016) SEC–MALLS analysis of ethylenediamine-pretreated native celluloses in LiCl/N,N-dimethylacetamide: softwood kraft pulp and highly crystalline bacterial, tunicate, and algal celluloses. Cellulose 23:1639–1647. doi:10.1007/s10570-016-0948-4

    Article  Google Scholar 

  135. Teixeira AR, Gantt R, Joseph KE, Maduskar S, Paulsen AD, Krumm C, Zhu C, Dauenhauer PJ (2016) Spontaneous aerosol ejection: origin of inorganic particles in biomass pyrolysis. ChemSusChem 9:1322–1328. doi:10.1002/cssc.201600112

    Article  Google Scholar 

  136. Proano-Aviles J, Lindstrom JK, Johnston PA, Brown RC (2016) Heat and mass transfer effects in a furnace-based micropyrolyzer. Energy Technol doi. doi:10.1002/ente.201600279

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme FP7/2007-2013/ERC grant agreement no. 290793 and the “Long Term Structural Methusalem Funding by the Flemish Government.” This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 664876. The SBO proposal “Bioleum” supported by the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Van Geem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Quiroga, A., Van Geem, K.M. & Marin, G.B. Towards first-principles based kinetic modeling of biomass fast pyrolysis. Biomass Conv. Bioref. 7, 305–317 (2017). https://doi.org/10.1007/s13399-017-0251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0251-0

Keywords

Navigation