Skip to main content
Log in

Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV–visible–near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ng, C.H.B., Fan, W.Y.: Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. J. Phys. Chem. B 110, 20801–20807 (2006)

    Article  Google Scholar 

  2. Zhang, N., Du, Y.L., Zhang, Y., Wang, C.M.: A simple method for controlling the type of cuprous oxide semiconductors using different surfactants. J. Mater. Chem. 21, 5013–5408 (2011)

    Google Scholar 

  3. Diab, M., Moshofsky, B., Plante, I.J., Mokari, T.: A facile one-step approach for the synthesis and assembly of copper and copper-oxide nanocrystals. J. Mater. Chem. 21, 11626–11630 (2011)

    Article  Google Scholar 

  4. Zhang, H.G., Zhu, Q.S., Zhang, Y., Wang, Y., Zhao, L., Yu, B.: One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17, 2766–2771 (2007)

    Article  Google Scholar 

  5. Zhang, J.T., Liu, J.F., Peng, Q., Wang, X., Li, Y.D.: Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867–871 (2006)

    Article  Google Scholar 

  6. Sun, S.D., Song, X.P., Sun, Y.X., Deng, D.C., Yang, Z.M.: The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity. Catal. Sci. Technol. 2, 925–930 (2012)

    Article  Google Scholar 

  7. White, B., Yin, M., Hall, A., Le, D., Stolbov, S., Rahman, T., Turro, N., O’Brien, S.: Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 6, 2095 (2006)

    Article  Google Scholar 

  8. Xu, H.L., Wang, W.Z., Zhu, W.: Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 110, 13829–13834 (2006)

    Article  Google Scholar 

  9. Yao, Y., McDowell, M.T., Ryu, I., Wu, H., Liu, N., Hu, L.B., Nix, W.D., Cui, Y.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)

    Article  Google Scholar 

  10. Hara, M., Kondo, T., Komoda, M., Ikeda, S., Shinohara, K., Tanaka, A., Kondo, J.N., Domen, K.: Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357–358 (1998)

    Article  Google Scholar 

  11. Hsieh, C.T., Chen, J.M., Lin, H.H., Shih, H.C.: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82, 3316–3318 (2003)

    Article  Google Scholar 

  12. Chen, Z.Z., Shi, E.W., Zheng, Y.Q., Li, W.J., Xiao, B., Zhuang, J.Y.: Growth of hex-pod-like Cu2O whisker under hydrothermal conditions. Cryst. Growth 249, 294–300 (2003)

    Article  Google Scholar 

  13. Tang, X.L., Ren, L., Sun, L.N., Tian, W.G., Cao, M.H., Hu, C.W.: A solvothermal route to Cu2O nanocubes and Cu nanoparticles. Chem. Res. Chin. Univ. 22, 547–551 (2006)

    Article  Google Scholar 

  14. Keyson, D., Volanti, D.P., Cavalcante, L.S., Simoes, A.Z., Varela, J.A., Longo, E.: CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Mater. Res. Bull. 43, 771–775 (2008)

    Article  Google Scholar 

  15. Xu, X., Zhang, M., Feng, J., Zhang, M.: Shape-controlled synthesis of single crystalline cupric oxide by microwave heating using an ionic liquid. Mater. Lett. 62, 2787–2790 (2008)

    Article  Google Scholar 

  16. Siegfried, M.J., Choi, K.S.: Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 16, 1743–1746 (2004)

    Article  Google Scholar 

  17. Li, H., Liu, R., Zhao, R., Zheng, Y., Chen, W., Xu, Z.: Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Cryst. Growth Des. 6(12), 2795–2798 (2006)

    Article  Google Scholar 

  18. Kuo, C.H., Huang, M.H.: Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C 112, 4718355–4718360 (2008)

    Google Scholar 

  19. Ho, J.Y., Huang, M.H.: Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 113(32), 14159–14164 (2009)

    Article  Google Scholar 

  20. Dong, Y., Li, Y., Wang, C., Cui, A., Deng, Z.: Preparation of cuprous oxide particles of different crystallinity. J. Colloid Interface Sci. 243, 85–89 (2001)

    Article  Google Scholar 

  21. Zhang, H., Shen, C., Chen, S., Xu, Z., Liu, F., Li, J., Gao, H.: Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology 16, 267–272 (2005)

    Article  Google Scholar 

  22. Sabbaghan, M., Beheshtian, J., Niazmand, R.L.: Preparation of Cu2O nanostructures by changing reducing agent and their optical properties. Mater. Lett. 153, 1–4 (2013)

    Article  Google Scholar 

  23. Lia, D., Dai, K., Lv, J., Lu, L., Liang, C., Zhua, G.: Facile and large-scale synthesis of novel Cu2O octahedral crystals with efficient visible light photocatalytic activity. Mater. Lett. 150, 48–51 (2015)

    Article  Google Scholar 

  24. Chen, C., He, L., Lai, L., Zhang, H., Lu, J., Guo, L., Li, Y.: Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies. J. Phys. Condens. Matter 21, 145601 (2009)

    Article  Google Scholar 

  25. Soon, A., Cui, X.Y., Delley, B., Wei, S.H., Stampfl, C.: Native defect-induced multifarious magnetism in nonstoichiometric cuprous oxide: first-principles study of bulk and surface properties of Cu2-δO. Phys. Rev. B 79, 035205 (2009)

    Article  Google Scholar 

  26. Lambert, F., Gaydardzhiev, S., Léonard, G., Lewis, G., Bareel, P.-F., Bastin, D.: Copper leaching from waste electric cables by biohydrometallurgy. Miner. Eng. 76, 38–46 (2015)

    Article  Google Scholar 

  27. Technical Bulletin Reaction Solvent Dimethyl Sulfoxide, Gaylord Chemical Corporation. http://chemistry-chemists.com/N3_2011/U/DMSO-technical_bulletin.pdf

  28. Liu, P., Zhao, M., Guo, J.: Thermal stabilities of poly (vinyl chloride)/calcium carbonate (PVC/CaCO3) composites. J. Macromol. Sci. B Phys. 45, 1135–1140 (2006)

    Article  Google Scholar 

  29. Zhu, P., Chen, Y., Wang, L.Y., Zhou, M., Zhou, J.: The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent. Waste Manag. 33, 484–488 (2013)

    Article  Google Scholar 

  30. Singh, J.V., Awasthi, A., Tomar, D.A., Singh, D.: Kinetics and mechanism of oxidation of reducing sugars: a review. Asian J. Chem. 25(2), 595–611 (2013)

    Article  Google Scholar 

  31. Fox, P.F.: Advanced Dairy Chemistry. Volume 3: Lactose, Water, Salts and Vitamins. Chapman and Hall, London (2009)

    Google Scholar 

  32. Nikolić, V.D., Ilić, D.P., Nikolić, L.B., Stanojević, L.P., Cakić, M.D., Tačić, A.D., Ilić-Stojanović, S.S.: The synthesis and characterization of iron(ii) gluconate. Adv. Technol. 3(2), 16–24 (2014)

    Google Scholar 

  33. Janakiraman, N., Johnson, M.: Functional groups of tree ferns (Cyathea) using FT-IR: chemotaxonomic implications. Rom. J. Biophys. 25(2), 131–141 (2015)

    Google Scholar 

  34. Harish, K., Renu, R., Kumar, S.R.: Synthesis of nickel hydroxide nanoparticles by reverse micelle method and its antimicrobial activity. Res. J. Chem. Sci. 1(9), 42–48 (2011)

    Google Scholar 

  35. Song, Q., Tang, Z., Guo, H., Chan, S.L.I.: Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values. J. Power Sources 112(2), 428–434 (2002)

    Article  Google Scholar 

  36. Rashad, M.M., Mostafa, A.G., Mwakikunga, B.W., Rayan, D.A.: Tunable optical properties of some rare earth elements-doped mayenite Ca12Al14O33 nanopowders elaborated by oxalate precursor route. J. Appl. Phys. A 123(42), 1–7 (2017)

    Google Scholar 

  37. Rashad, M.M., Mostafa, A.G., Rayan, D.A.: Structure, optical and magnetic behavior of nanocrystalline CuO nanopowders synthesized via a new technique using Schiff base complex. J. Mater. Sci. Mater. Electron. 27(3), 2614–2623 (2016)

    Article  Google Scholar 

  38. Liao, G.Z., Chen, S., Quan, X., Zhang, Y.B., Zhao, H.M.: A surfactant-free solvothermal synthesis of Cu2O microcrystals and their photocatalytic activity. Water Sci. Technol. 73(10), 2379–2385 (2016)

    Article  Google Scholar 

  39. Prabhakaran, G., Murugan, R.: Room temperature ferromagnetic properties of Cu2O microcrystals. J. Alloys Compd. 579, 572–575 (2013)

    Article  Google Scholar 

  40. Mahajan, M.B., Pavan, M.S., Joy, P.A.: Ferromagnetic properties of glucose coated Cu2O nanoparticles. Solid State Commun. 149, 2199–2201 (2009)

    Article  Google Scholar 

  41. Dhonge, B.P., Ray, S.S., Mwakikunga, B.: Electronic to protonic conduction switching in Cu2O nanostructured porous films: the effect of humidity exposure. RSC Adv. 7, 21703–21712 (2017)

    Article  Google Scholar 

  42. Mhlongoa, G.H., Shingangea, K., Tshabalalaa, Z.P., Dhongea, B.P., Mahmoud, F.A., Mwakikungaa, B.W., Motaunga, D.E.: Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of this work by Central Metallurgical R&D Institute (CMRDI) under Grant No. ID 48/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abdelbasir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelbasir, S.M., El-Sheikh, S.M., Rashad, M.M. et al. Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables. Electron. Mater. Lett. 14, 505–516 (2018). https://doi.org/10.1007/s13391-018-0056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0056-8

Keywords

Navigation