Skip to main content
Log in

Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Ni/Ni-Sn/Ni sandwiched simulated package structures were successfully bonded under low temperature and low pressure by Ni-Sn transient liquid-phase sintering bonding. The results show that, after isothermally holding for 240 min at 300 °C and 180 min at 340 °C, Sn was completely transformed into Ni3Sn4 intermetallic compounds. When the Ni3Sn4 phases around Ni particles were pressed together, the porosity of the bonding layer increased, which obviously differed from the normal sintering densification process. With further analysis of this phenomenon, it was found that large volume shrinkage (14.94% at 340 °C) occurred when Ni reacted with Sn to form Ni3Sn4, which caused void formation. A mechanistic model of the microstructural evolution in the bonding layer was proposed. Meanwhile, the resistivity of the bonding layer was measured and analyzed by using the four-probe method; the microstructural evolution was well reflected by the resistivity of the bonding layer. The relationship between the resistivity and microstructure was also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, and M. Hatano, IEEE Electr. Dev. L. 34, 1175 (2013).

    Article  Google Scholar 

  2. P. G. Neudeck, S. L. Garverick, D. J. Spry, L. Y. Chen, G. M. Beheim, M. J. Krasowski, and M. Mehregany, Phys. Status Solidi A. 206, 2329 (2009).

    Article  Google Scholar 

  3. D. Maier, M. Alomari, N. Grandjean, J. Carlin, M. Diforte-Poisson, C. Dua, S. Delage, and E. Kohn, IEEE Electr. Dev. L. 33, 985 (2012).

    Article  Google Scholar 

  4. N. S. Bosco and F. W. Zok, Acta Mater. 53, 2019 (2005).

    Article  Google Scholar 

  5. T. Luu, A. Duan, K. E. Aasmundtvit, and N. Hoivik, J. Electron. Mater. 42, 3582 (2013).

    Article  Google Scholar 

  6. T. A. Tollefsen, A. Larsson, M. M. V. Taklo, A. Neels, X. Maeder, K. Høydalsvik, D. W. Breiby, and K. Aasmundtveit, Metall. Mater. Trans B. 44B, 407 (2013).

    Google Scholar 

  7. Z. Pešina, V. Vykoukal, M. Palcut, and J. Sopoušek, Electron. Mater Lett. 10, 293 (2014).

    Article  Google Scholar 

  8. J. Bultitude, J. McConnell, and C. Shearer, J. Mater. Sci.-Mater. El. 26, 9236 (2015).

    Article  Google Scholar 

  9. P. O. Quintero and F. P. McCluskey, IMPAS J. Microelectron. Electron. Packag. 6, 66 (2009).

    Article  Google Scholar 

  10. H. Greve, L. Y. Chen, I. Fox, and F. P. McCluskey, Proceedings of the 63rd Electronic Components & Technology Conference (ECTC), p. 435, IEEE, Las Vegas, USA (2013).

    Google Scholar 

  11. F. Q. Lang, H. Yamaguchi, H. Nakagawa, and H. Sato, J. Electrochem. Soc. 160, 315 (2013).

    Article  Google Scholar 

  12. T. D’hondt and S. F. Corbin, Metall. Mater. Trans. A. 37A, 217 (2006).

    Article  Google Scholar 

  13. I. Ohnuma, R. Kainuma, and K. Ishida, J. Min. Metall. B. 48, 413 (2012).

    Article  Google Scholar 

  14. H. Okamoto, J. Phase Equilib. Diff. 27, 535 (2006).

    Article  Google Scholar 

  15. N. Saunders and A. Miodownik, Bull. Alloy Phase Diagrams. 11, 278 (1990).

    Article  Google Scholar 

  16. I. Karakaya and W. Thompson, Bull. Alloy Phase Diagrams. 8, 340 (1987).

    Article  Google Scholar 

  17. H. L. Feng, J. H. Huang, J. Zhang, and X. D. Zhai, Proceedings of the 17th Electronics Packaging and Technology Conference (EPTC). p. 1, IEEE, Singapore (2015).

    Google Scholar 

  18. H. Okamoto, J. Phase Equilib. Diff. 29, 297 (2008).

    Article  Google Scholar 

  19. R. M. German, P. Suri, and S. J. Park, J. Mater. Sci. 44, 1 (2009).

    Article  Google Scholar 

  20. J. A. van Beek, S. A. Stolk, and F. J. J. van Loo, Z. Metallkde. 73, 441 (1982).

    Google Scholar 

  21. C. Ghosh, J. Mater. Sci.-Mater. El. 24, 2558 (2013).

    Article  Google Scholar 

  22. C. E. Ho, S. C. Yang, and C. R. Kao, J. Mater. Sci.-Mater. El. 18, 155 (2007).

    Article  Google Scholar 

  23. M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, E. Kaschnitz, and W. A. Wakeham, J. Phys. Chem. Ref. Data. 39, 033105 (2010).

    Article  Google Scholar 

  24. H. Preston-Thomas, Metrologia 27, 3 (1990).

    Article  Google Scholar 

  25. H. P. R. Frederikse, R. J. Fields, and A. Felsman, J. Appl. Phys. 72, 2879 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hua Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, HL., Huang, JH., Yang, J. et al. Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding. Electron. Mater. Lett. 13, 489–496 (2017). https://doi.org/10.1007/s13391-017-6317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6317-0

Keywords

Navigation