Skip to main content

Advertisement

Log in

Fast formation of Ni–Sn intermetallic joints using Ni–Sn paste for high-temperature bonding applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The suitability of Ni–Sn combination paste as a transient liquid phase sintering (TLPS) bonding material for applications in high-temperature power electronic technologies was investigated. The microstructure and mechanical properties of joints bonded through TLPS with a Sn-30 wt% Ni paste were investigated at varying bonding temperatures (250, 270, 300, and 350 °C) and times using field-emission scanning electron microscopy, field-emission transmission electron microscopy, electron probe micro-analyzer, differential scanning calorimetry, and X-ray diffraction analyses. The results indicated that Ni and Sn reacted and bonded quickly to form Ni–Sn intermetallic compounds, which primarily consisted of Ni3Sn4 and residual Ni particles. The mechanical strength analysis results show that the shear strength values of the joints tended to increase as the bonding temperature increased. As Ni3Sn4 reacted with Ni particles, the joints achieved a stable and dense microstructure. The shear strength values were determined to be 47.9 MPa (300 °C) and 41.4 MPa (350 °C) for 15 and 5 min, respectively. Furthermore, the shear strength value saturated at a bonding temperature of 350 °C for a bonding duration of 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.W. Yoon, M.D. Glover, K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013). https://doi.org/10.1109/TPEL.2012.2212211

    Article  Google Scholar 

  2. T. Satoh, T. Ishizaki, M. Usui, Mater. Desi. 124, 203 (2017). https://doi.org/10.1016/j.matdes.2017.03.061

    Article  CAS  Google Scholar 

  3. F. Lang, H. Yamaguchi, H. Nakagawa, H. Sato, J. Electrochem. Soc. 160, 315 (2013). https://doi.org/10.1149/2.114308jes

    Article  CAS  Google Scholar 

  4. T. Kanata, K. Nishiwaki, K. Hamada, in 20th International Power Electronics Conference Proceedings. (IEEE, Sapporo, 2010), pp. 778–782. https://doi.org/10.1109/IPEC.2010.5543294

    Chapter  Google Scholar 

  5. A.A. Bajwa, Y. Qin, J. Wilde, R. Reiner, P. Waltereit, R. Quay, 64th Electronic Components and Technology Conference Proceedings (IEEE, Orlando, 2014), pp. 2181–2188. https://doi.org/10.1109/ECTC.2014.6897605

    Book  Google Scholar 

  6. H. Feng, J. Huang, J. Yang, S. Zhou, R. Zhang, S. Chen, J. Electron. Mater. 46, 4152 (2017). https://doi.org/10.1007/s11664-017-5357-4

    Article  CAS  Google Scholar 

  7. H.A. Mustain, W.D. Brown, S.S. Ang, IEEE Trans. Compon. Packag. Technol. 33, 563 (2010). https://doi.org/10.1109/TCAPT.2010.2046901

    Article  CAS  Google Scholar 

  8. Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, J. Electron. Mater. 46, 4575 (2017). https://doi.org/10.1007/s11664-017-5464-2

    Article  CAS  Google Scholar 

  9. S.W. Yoon, K. Shiozaki, S. Yasuda, M.D. Glover, 27th Applied Power Electronics Conference and Exposition (APEC) Proceedings (IEEE, Orlando, 2012), pp. 478–482. https://doi.org/10.1109/APEC.2012.6165863

    Book  Google Scholar 

  10. H. Okamoto, J. Phase Equilibria diffus. 29, 297 (2008). https://doi.org/10.1007/s11669-008-9313-0

    Article  CAS  Google Scholar 

  11. M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi, T. Suga, Jpn. J. Appl. Phys. 55, 04EC14 (2016). https://doi.org/10.7567/JJAP.55.04EC14

    Article  Google Scholar 

  12. P.Y. Chia, A.S.M.A. Haseeb, J. Mater. Sci.: Mater. Electron. 26, 294 (2015). https://doi.org/10.1007/s10854-014-2398-9

    Article  CAS  Google Scholar 

  13. H. Feng, J. Huang, X. Peng, Z. Lv, Y. Wang, J. Yang, S. Chen, X. Zhao, J. Electron. Mater. 47, 4642 (2018). https://doi.org/10.1007/s11664-018-6336-0

    Article  CAS  Google Scholar 

  14. H. Ji, M. Li, S. Ma, M. Li, Mater. Desi. 108, 590 (2016). https://doi.org/10.1016/j.matdes.2016.07.027

    Article  CAS  Google Scholar 

  15. R. Alias, Structural and dielectric properties of glass-ceramic substrate with varied sintering temperature, in Sintering Applications. ed. by B. Ertug (Intech Open, London, 2013), pp. 89–118. https://doi.org/10.5772/54037

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Boo Jung or Jeong-Won Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, SE., Jung, SB. & Yoon, JW. Fast formation of Ni–Sn intermetallic joints using Ni–Sn paste for high-temperature bonding applications. J Mater Sci: Mater Electron 31, 15048–15060 (2020). https://doi.org/10.1007/s10854-020-04068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04068-1

Navigation