Skip to main content
Log in

Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode (~4,200 mAhg−1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg−1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  Google Scholar 

  2. K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, Science 311, 977 (2006).

    Article  Google Scholar 

  3. E. Choi, D. Kim, I. Lee, S. J. Chae, A. Kim, S. G. Pyo, and S. Yoon, Electron. Mater. Lett. 11, 836 (2015).

    Article  Google Scholar 

  4. D. Jung, S. G. Cho, T. Moon, and H. Sohn, Electron. Mater. Lett. 12, 17 (2016).

    Article  Google Scholar 

  5. C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel, and Y. Cui, Acs Nano 4, 1443 (2010).

    Article  Google Scholar 

  6. C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  Google Scholar 

  7. L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Nano Lett. 9, 3370 (2009).

    Article  Google Scholar 

  8. H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, and J. Liang, Adv. Mater. 19, 4067 (2007).

    Article  Google Scholar 

  9. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, Nat. Mater. 9, 461 (2010).

    Article  Google Scholar 

  10. T. Song, J. L. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. G. Huang, K. C. Hwang, J. A. Rogers, and U. Paik, Nano Lett. 10, 1710 (2010).

    Article  Google Scholar 

  11. L. W. Su, Z. Zhou, and M. M. Ren, Chem. Commun. 46, 2590 (2010).

    Article  Google Scholar 

  12. J. K. Yoo, J. Kim, Y. S. Jung, and K. Kang, Adv. Mater. 24, 5452 (2012).

    Article  Google Scholar 

  13. Y. Yu, L. Gu, C. B. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, Adv. Mater. 22, 2247 (2010).

    Article  Google Scholar 

  14. L. B. Chen, X. H. Xie, J. Y. Xie, K. Wang, and J. Yang, J. Appl. Electrochem. 36, 1099 (2006).

    Article  Google Scholar 

  15. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, Science 334, 75 (2011).

    Article  Google Scholar 

  16. J. Li, L. Christensen, M. N. Obrovac, K. C. Hewitt, and J. R. Dahn, J. Electrochem. Soc. 155, A234 (2008).

    Article  Google Scholar 

  17. W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, and N. L. Wu, Electrochem. Solid St. 8, A100 (2005).

    Article  Google Scholar 

  18. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, ACS Appl. Mater. Inter. 2, 3004 (2010).

    Article  Google Scholar 

  19. D. Mazouzi, B. Lestriez, L. Roue, and D. Guyomard, Electrochem. Solid St. 12, A215 (2009).

    Article  Google Scholar 

  20. B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi, and J. Cho, Angew. Chem. Int. Edit. 51, 8762 (2012).

    Article  Google Scholar 

  21. U. S. Vogl, P. K. Das, A. Z. Weber, M. Winter, R. Kostecki, and S. F. Lux, Langmuir 30, 10299 (2014).

    Article  Google Scholar 

  22. C. Erk, T. Brezesinski, H. Sommer, R. Schneider, and J. Janek, ACS Appl. Mater. Inter. 5, 7299 (2013).

    Article  Google Scholar 

  23. M. Y. Wu, X. C. Xiao, N. Vukmirovic, S. D. Xun, P. K. Das, X. Y. Song, P. Olalde-Velasco, D. D. Wang, A. Z. Weber, L. W. Wang, V. S. Battaglia, W. L. Yang, and G. Liu, J. Am. Chem. Soc. 135, 12048 (2013).

    Article  Google Scholar 

  24. Z. Y. Yuan and H. R. Hu, J. Appl. Polym. Sci. 126, E458 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kisuk Kang or Yeon Sik Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, JK., Jeon, J., Kang, K. et al. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries. Electron. Mater. Lett. 13, 136–141 (2017). https://doi.org/10.1007/s13391-017-6288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6288-1

Keywords

Navigation