Skip to main content
Log in

Fabrication and characterization of porous silicon nanowires

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, Science 294, 1313 (2001).

    Article  Google Scholar 

  2. T. Moon, J. Kang, Y. Han, C. Kim, Y. Jeon, H. Kim, and S. Kim, ACS Appl. Mater. Interfaces 3, 3957 (2011).

    Article  Google Scholar 

  3. T. Moon, J.-C. Jung, Y. Han, Y. Jeon, S.-M. Koo, and S. Kim, IEEE T. Electron Dev. 59, 3288 (2012).

    Article  Google Scholar 

  4. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  5. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature 449, 885 (2007).

    Article  Google Scholar 

  6. E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 9224 (2008).

    Article  Google Scholar 

  7. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Nano Lett. 8, 710 (2008).

    Article  Google Scholar 

  8. K. Bhowmik and A. Mondal, Electron. Mater. Lett. 11, 180 (2015).

    Article  Google Scholar 

  9. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  Google Scholar 

  10. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Nat. Biotechnol. 23, 1294 (2005).

    Article  Google Scholar 

  11. S. M. Koo, Q. Li, M. D. Edelstein, C. A. Richter, and E. M. Vogel, Nano Lett. 5, 2519 (2005).

    Article  Google Scholar 

  12. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2003).

    Article  Google Scholar 

  13. X. F. Duan, Y. Huang, and C. M. Lieber, Nano Lett. 2, 487 (2002).

    Article  Google Scholar 

  14. T. Moon, G. S. Shin, and B. Park, Electron. Mater. Lett. 11, 917 (2015).

    Article  Google Scholar 

  15. W. Lee, T. Hwang, S. Lee, S.-Y. Lee, J. Kang, B. Lee, J. Kim, T. Moon, and B. Park, Nano Energy 17, 180 (2015).

    Article  Google Scholar 

  16. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  Google Scholar 

  17. Y. Wang, V. Schmidt, S. Senz, and U. Gosele, Nat. Nanotechnol. 1, 186 (2006).

    Article  Google Scholar 

  18. V. Sivakov, F. Heyroth, F. Falk, G. Andrä, and S. Christiansen, J. Cryst. Growth 300, 288 (2007).

    Article  Google Scholar 

  19. V. Sivakov, G. Andrä, C. Himcinschi, U. Gösele, D. R. T. Zahn, and S. Christiansen, Appl. Phys. A Mater. Sci. Process. 85, 311 (2006).

    Article  Google Scholar 

  20. B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, Nano Lett. 5, 2524 (2005).

    Article  Google Scholar 

  21. S. H. Oh, K. van Benthem, S. I. Molina, A. Y. Borisevich, W. Luo, P. Werner, N. D. Zakharov, D. Kumar, S. T. Pantelides, and S. J. Pennycook, Nano Lett. 8, 1016 (2008).

    Article  Google Scholar 

  22. T. Moon, L. Chen, S. Choi, C. Kim, and W. Lu, Adv. Func. Mater. 24, 1949 (2014).

    Article  Google Scholar 

  23. T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, T. Saitoh, K. Komori, and M. Fujii, Nano Lett. 8, 362 (2008).

    Article  Google Scholar 

  24. K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  Google Scholar 

  25. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, Adv. Funct. Mater. 16, 387 (2006).

    Article  Google Scholar 

  26. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, Small 1, 1062 (2005).

    Article  Google Scholar 

  27. H. Sohn, S. Létant, M. J. Sailor, and W. C. Trogler, J. Am. Chem. Soc. 122, 5399 (2000).

    Article  Google Scholar 

  28. S. Jang, J. Kim, Y. Koh, Y. C. Ko, H.-G. Woo, and H. Sohn, J. Nanosci. Nanotechnol. 7, 4049 (2007).

    Article  Google Scholar 

  29. S. Jang, Y. Koh, J. Kim, J. Park, C. Park, S. J. Kim, S. Cho, Y. C. Ko, and H. Sohn, Mater. Lett. 62, 552 (2008).

    Article  Google Scholar 

  30. S. G. Kim, S. Kim, Y. C. Ko, S. Cho, and H. Sohn, Colloids Surfaces A Physicochem. Eng. Asp. 313-314, 398 (2008).

    Article  Google Scholar 

  31. Y. Koh, J. Park, J. Kim, S. Jang, H.-G. Woo, and H. Sohn, J. Nanosci. Nanotechnol. 10, 3590 (2010).

    Article  Google Scholar 

  32. S. G. Lee, Y. Koh, S. Jang, J. Kim, H.-G. Woo, S. Kim, and H. Sohn, J. Nanosci. Nanotechnol. 10, 3266 (2010).

    Article  Google Scholar 

  33. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, Science 278, 840 (1997).

    Article  Google Scholar 

  34. Y. Koh, S. Jang, J. Kim, S. Kim, Y. C. Ko, S. Cho, and H. Sohn, Colloids Surfaces A Physicochem. Eng. Asp. 313-314, 328 (2008).

    Article  Google Scholar 

  35. C. Park, J. Kim, S. Jang, H.-G. Woo, Y. C. Ko, and H. Sohn, J. Nanosci. Nanotechnol. 10, 3375 (2010).

    Article  Google Scholar 

  36. E. Angelin, L. Cheng, W. Freeman, and M. Sailor, Adv. Drug Deliv. Rev. 60, 1266 (2008).

    Article  Google Scholar 

  37. S. Kim, M. S. Kim, H. Park, G. Nam, H. Yoon, and J.-Y. Leem, Electron. Mater. Lett. 10, 565 (2014).

    Article  Google Scholar 

  38. K. Peng, J. Jie, W. Zhang, and S.-T. Lee, Appl. Phys. Lett. 93, 033105 (2008).

    Article  Google Scholar 

  39. T. Moon, C. Kim, and B. Park, J. Power Sources 155, 391 (2006).

    Article  Google Scholar 

  40. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, and X. Duan, Nano Lett. 9, 4539 (2009).

    Article  Google Scholar 

  41. A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. Yang, Nano Lett. 9, 3550 (2009).

    Article  Google Scholar 

  42. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, Chem. Eur. J. 12, 7942 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taeho Moon or Honglae Sohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D., Cho, S.G., Moon, T. et al. Fabrication and characterization of porous silicon nanowires. Electron. Mater. Lett. 12, 17–23 (2016). https://doi.org/10.1007/s13391-015-5409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5409-y

Keywords

Navigation