Skip to main content
Log in

Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Horn comb, an abundant biomass waste, has been successfully converted into a hierarchical porous nitrogen doped carbon (HPNDC) via a simple and costeffective approach. Tested as anode for sodium ion batteries (SIBs), horn comb derived carbon shows good rate capability and cycling stability, delivering a high initial charge capacity of 400 mAh g−1 at 100 mA g−1, retaining a reversible capacity of 112 mAh g−1 at 5 A g−1, and exhibiting a capacity of 241 mAh g−1 at 100 mA g−1 after 100 cycles. These superior electrochemical performances can be ascribed to its unique hierarchical pore structure combined with appropriate nitrogen doping effects. We believe that our works will be helpful in promoting the development of high-rate and low-cost sodium ion batteries for large-scale energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Nithya and S. Gopukumar, Wiley Interdiscip. Rev. Energy Environ. 4, 253 (2015).

    Article  Google Scholar 

  2. Y. Wang, D. W. Su, C. Y. Wang, and G. X. Wang, Electrochem. Commun. 29, 8 (2013).

    Article  Google Scholar 

  3. W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen, and X. Ji, J. Mater. Chem. A 1, 10662 (2013).

  4. F. Fu, K. Tang, K. Song, P. A. van Aken, Y. Yu, and J. Maier, Nanoscale 6, 1384 (2014).

    Article  Google Scholar 

  5. N. Sun, H. Liu, and B. Xu, J. Mater. Chem. A 3, 20560 (2015).

    Article  Google Scholar 

  6. R. Alcántara, J. M. Jiménez-Mateos, P. Lavela, and J. L. Tirado, Electrochem. Commun. 3, 639 (2001).

    Article  Google Scholar 

  7. L. David, R. Bhandavat, and G. Singh, ACS Nano 8, 1759 (2014).

    Article  Google Scholar 

  8. Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, and J. Liu, Nano Lett. 12, 3783 (2012).

    Article  Google Scholar 

  9. H. Wang, Z. Wu, F. Meng, D. Ma, X. Huang, L. Wang, and X. Zhang, ChemSusChem 6, 56 (2013).

    Article  Google Scholar 

  10. V. G. Pol, E. Lee, D. Zhou, F. Dogan, J. M. Calderon-Moreno, and C. S. Johnson, Electrochim. Acta 127, 61 (2014).

    Article  Google Scholar 

  11. Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y. S. Hu, H. Li, L. Chen, and X. Huang, J. Mater. Chem. A 3, 71 (2015).

    Article  Google Scholar 

  12. D. Li, H. Chen, G. Liu, M. Wei, L. Ding, S. Wang, and H. Wang, Carbon 94, 888 (2015).

    Article  Google Scholar 

  13. V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham, and S. Gopukumar, Electrochim. Acta 190, 337 (2016).

    Article  Google Scholar 

  14. X. Cao, S. Chen, and G. Wang, Electron. Mater. Lett. 10, 819 (2014).

    Article  Google Scholar 

  15. X. Zhou and Y. G. Guo, ChemElectroChem 1, 83 (2014).

    Article  Google Scholar 

  16. D. Y. Pan, S. Wang, B. Zhao, M. H. Wu, H. J. Zhang, Y. Wang, and Z. Jiao, Chem. Mater. 21, 3136 (2009).

    Article  Google Scholar 

  17. A. Ferrari and C. J. Robertson, Phys. Rev. B: Condens. Matter Mater. Phys. 61, 14095 (2000).

    Article  Google Scholar 

  18. H. Wang, W. Yu, J. Shi, N. Mao, S. Chen, and W. Liu, Electrochim. Acta 188, 103 (2016).

    Article  Google Scholar 

  19. Y. Zhou, W. Sun, X. Rui, Y. Zhou, W. J. Ng, Q. Yan, and E. Fong, Nano Energy 21, 71 (2016).

    Article  Google Scholar 

  20. Y. C. Wang, B. Y. Zhu, J. F. Ni, L. Zhang, H. B. Wang, and L. J. Gao, ChemElectroChem 1, 951 (2014).

    Article  Google Scholar 

  21. X. Q. Xie, D. W. Su, J. Q. Zhang, S. Q. Chen, A. K. Mondal, and G. X. Wang, Nanoscale 7, 3163 (2015).

    Google Scholar 

  22. S. Wenzel, T. Hara, J. Janek, and P. Adelhelm, Energy Environ. Sci. 4, 3342 (2011).

    Article  Google Scholar 

  23. K. Tang, L. Fu, R. J. White, L. Yu, M. M. Titirici, M. Antonietti, and J. Maier, Adv. Energy Mater. 2, 873 (2012).

    Article  Google Scholar 

  24. Y. X. Wang, S. L. Chou, H. K. Liu, and S. X. Dou, Carbon 57, 202 (2013).

    Article  Google Scholar 

  25. J. Liu, H. Liu, T. Yang, G. Wang, and M. O. Tade, Chinese Sci. Bull. 59, 2186 (2014).

    Article  Google Scholar 

  26. W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. J. Lee, and X. Ji, ACS Appl. Mater. Inter. 7, 2626 (2015).

    Article  Google Scholar 

  27. R. S. Babu and M. Pyo, J. Electrochem. Soc. 161, A1045 (2014).

    Article  Google Scholar 

  28. Z. Yuan, L. Si, and Z. Xiao, J. Mater. Chem. A 3, 23403 (2015).

    Article  Google Scholar 

  29. K. L. Zhang, X. Li, J. Liang, Y. C. Zhu, L. Hu, Q. S. Cheng, C. Guo, N. Lin, and Y. Qian, Electrochim. Acta 155, 174 (2015).

    Article  Google Scholar 

  30. K. L. Hong, L. Qie, R. Zeng, Z. Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q. Fan, W. Zhang, and Y. Huang, J. Mater. Chem. A 2, 12733 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junke Ou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, J., Yang, L. & Xi, X. Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance. Electron. Mater. Lett. 13, 66–71 (2017). https://doi.org/10.1007/s13391-017-6223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6223-5

Keywords

Navigation