Skip to main content

Advertisement

Log in

Buckwheat derived nitrogen-rich porous carbon material with a high-performance Na-storage

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nitrogen-rich porous carbon materials have been prepared by pyrolyzing buckwheat with a nano-CaCO3 template. The buckwheat-derived porous carbons exhibit high nitrogen content (3.14%) and interconnected mesoporous dominated porous structures with some macropores, which endows them high efficient electrochemical energy storage. When they tested as anode materials for sodium ion batteries, an initial reversible capacity of 258 mAh g−1 is obtained at 30 mA g−1, and a high capacity of 185 mAh g−1 can be maintained after 100 cycles. Moreover, this work suggests that the cost-effective biomass material of buckwheat is of great potential to be used as anodes for sodium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Wang, X.B. Zhang, N-Doped C@ Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: high performance and new reaction mechanism. Adv. Mater. 31, 1805432 (2019)

    Google Scholar 

  2. S. Wang, Y. Zhu, J. Yan et al., P3-type K0.32Fe0.35Mn0.65O20.39 H2O: a promising cathode for Na-ion full batteries. J. Mater. Chem. A 6, 13075–13081 (2018)

    CAS  Google Scholar 

  3. S. Wang, T. Sun, S. Yuan et al., P3-type K0.33Co0.53Mn0.47O20.39 H2O: a novel bifunctional electrode for Na-ion batteries. Mater. Horiz. 4, 1122–1127 (2017)

    CAS  Google Scholar 

  4. T. Sun, Z. Li, H. Wang et al., A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016)

    CAS  Google Scholar 

  5. Y.H. Zhu, Q. Zhang, X. Yang et al., Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem 5, 168–179 (2019)

    CAS  Google Scholar 

  6. Y.H. Zhu, X. Yang, D. Bao et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2, 736–746 (2018)

    CAS  Google Scholar 

  7. X. Yang, X. Feng, X. Jin et al., An illumination-assisted flexible self-powered energy system based on a Li-O2 battery. Angew. Chem. Int. Ed. 131, 16563–16567 (2019)

    Google Scholar 

  8. F.L. Meng, K.H. Liu, Y. Zhang et al., Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 14, 1703843 (2018)

    Google Scholar 

  9. Y. Li, Y.S. Hu, M.M. Titirici et al., Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6, 1600659 (2016)

    Google Scholar 

  10. H. Qiu, Y. Wang, Y. Liu et al., Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. J. Porous Mater. 24, 551–557 (2017)

    CAS  Google Scholar 

  11. J. Ou, L. Yang, X. Xi, Nitrogen-rich porous carbon anode with high performance for sodium ion batteries. J. Porous Mater. 24, 189–192 (2017)

    Google Scholar 

  12. S.L. Candelaria, Y. Shao, W. Zhou et al., Nanostructured carbon for energy storage and conversion. Nano Energy 1, 195–220 (2012)

    CAS  Google Scholar 

  13. V.L. Chevrier, G. Ceder, Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011)

    CAS  Google Scholar 

  14. D. Li, H. Chen, G. Liu et al., Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015)

    CAS  Google Scholar 

  15. Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6, 1802272 (2019)

    Google Scholar 

  16. H. Wang, W. Yu, J. Shi et al., Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim. Acta 188, 103–110 (2016)

    CAS  Google Scholar 

  17. Q. Jiang, Z. Zhang, S. Yin et al., Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl. Surf. Sci. 379, 73–82 (2016)

    CAS  Google Scholar 

  18. Y. Zhu, M. Chen, Q. Li et al., A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129, 695–701 (2018)

    CAS  Google Scholar 

  19. A. Hu, S. Jin, Z. Du et al., NS codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries. J. Energy Chem. 27, 203–208 (2018)

    Google Scholar 

  20. I. Elizabeth, B.P. Singh, S. Trikha et al., Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. J. Power Sources 329, 412–421 (2016)

    CAS  Google Scholar 

  21. K. Wu, Q. Liu, Nitrogen-doped mesoporous carbons for high performance supercapacitors. Appl. Surf. Sci. 379, 132–139 (2016)

    CAS  Google Scholar 

  22. Z.H. Xiao, Y.Q. Zhu, H.T. Yi et al., A simple CaCO3-assisted template carbonization method for producing nitrogen-containing nanoporous carbon spheres and its electrochemical improvement by the nitridation of azodicarbonamide. Electrochim. Acta 155, 93–102 (2015)

    CAS  Google Scholar 

  23. J. Deng, M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18, 4824–4854 (2016)

    CAS  Google Scholar 

  24. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)

    Google Scholar 

  25. F. Zhu, Chemical composition and health effects of Tartary buckwheat. Food Chem. 203, 231–245 (2016)

    CAS  PubMed  Google Scholar 

  26. W. Zhang, Q. Yang, M. Xia et al., Effects of phosphate fertiliser on the physicochemical properties of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) starch. Food Chem. 307, 125543 (2020)

    PubMed  Google Scholar 

  27. P. Qin, Q. Wang, F. Shan et al., Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol. 45, 951–958 (2010)

    CAS  Google Scholar 

  28. Y. Mao, H. Duan, B. Xu et al., Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 7950–7955 (2012)

    CAS  Google Scholar 

  29. T. Kuang, F. Chen, L. Chang et al., Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 307, 1017–1025 (2017)

    CAS  Google Scholar 

  30. Y.K. Kim, J.H. Park, J.W. Lee, Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes. Carbon 126, 215–224 (2018)

    CAS  Google Scholar 

  31. H. Gu, D. Cao, J. Wang et al., Micro-CaCO3 conformal template synthesis of hierarchical porous carbon bricks: as a host for SnO2 nanoparticles with superior lithium storage performance. Mater. Today Energy 4, 75–80 (2017)

    Google Scholar 

  32. H. Liu, M. Jia, N. Sun et al., Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7, 27124–27130 (2015)

    CAS  PubMed  Google Scholar 

  33. K. Hong, L. Qie, R. Zeng et al., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014)

    CAS  Google Scholar 

  34. K. Zhang, X. Li, J. Liang et al., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta 155, 174–182 (2015)

    CAS  Google Scholar 

  35. S. Chen, W. Xing, J. Duan et al., Nanostructured morphology control for efficient supercapacitor electrodes. J. Mater. Chem. A 1, 2941–2954 (2013)

    CAS  Google Scholar 

  36. X. Yuan, M. Zhang, X. Chen et al., Transesterification of dimethyl oxalate with phenol over nitrogen-doped nanoporous carbon materials. Appl. Catal. A 439, 149–155 (2012)

    Google Scholar 

  37. J. Ou, Y. Zhang, L. Chen et al., Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J. Mater. Chem. A 3, 6534–6541 (2015)

    CAS  Google Scholar 

  38. M. Lu, W. Yu, J. Shi et al., Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries. Electrochim. Acta 251, 396–406 (2017)

    CAS  Google Scholar 

  39. Y. Zhang, Y. Meng, Y. Wang et al., Sodium carboxymethylcellulose derived oxygen-rich porous carbon anodes for high-performance lithium/sodium-ion batteries. ChemElectroChem 4, 500–507 (2017)

    CAS  Google Scholar 

  40. L. Fan, B. Lu, Reactive oxygen-doped 3D interdigital carbonaceous materials for Li and Na ion batteries. Small 12, 2783–2791 (2016)

    CAS  PubMed  Google Scholar 

  41. Z. Chen, Z. Xu, W. Li, C. Chen, M. Wu, Cellulose hydrogel-derived self-activated carbon/SnO2 nanocomposites for high-performance lithium storage. ACS Appl. Energy Mater. 2, 5171–5182 (2019)

    CAS  Google Scholar 

  42. G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 22, 853–857 (2010)

    CAS  PubMed  Google Scholar 

  43. K. Tang, R.J. White, X. Mu, M. Titirici, P. Aken, J. Maier, Hollow carbon nanospheres with a high rate capability for lithium-based batteries. Chemsuschem 5, 400–403 (2012)

    CAS  PubMed  Google Scholar 

  44. X. Zhou, Y. Zhong, M. Yang et al., Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 50, 12888–12891 (2014)

    CAS  Google Scholar 

  45. L. Chen, Y. Zhang, C. Lin, W. Yang, Y. Meng, Y. Guo et al., Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J. Mater. Chem. A 2, 9684–9690 (2014)

    CAS  Google Scholar 

  46. P. Han, Y. Yue, L. Zhang et al., Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 50, 1355–1362 (2012)

    CAS  Google Scholar 

  47. V. Augustyn, J. Come, M.A. Lowe et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013)

    CAS  PubMed  Google Scholar 

  48. C. Chen, Z. Wang, B. Zhang et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017)

    Google Scholar 

  49. X. Zhang, G. Zhu, M. Wang et al., Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116, 686–694 (2017)

    CAS  Google Scholar 

  50. Z. Guan, H. Liu, B. Xu et al., Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. J. Mater. Chem. A 3, 7849–7854 (2015)

    CAS  Google Scholar 

  51. Z. Wang, L. Qie, L. Yuan et al., Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55, 328–334 (2013)

    CAS  Google Scholar 

  52. Z. Chen, J. Liao, W. Li, W. Song, C. Chen, J. Yang, Z. Xu, T. Feng, M. Wu, Activation-free N-doped porous carbon to enhance surface-driven K storage vs intercalation dominated Na storage. Appl. Surf. Sci. 506, 144909 (2020)

    Google Scholar 

Download references

Acknowledgements

We are very grateful for the support of the National Natural Science Foundation of China (No. 21606024), the Sichuan Science and Technology Program (2019YJ0665), Zigong key innovation project (2019GYCX12) and the Open Research Fund of Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junke Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, J., Wang, J., Zhao, G. et al. Buckwheat derived nitrogen-rich porous carbon material with a high-performance Na-storage. J Porous Mater 27, 1139–1147 (2020). https://doi.org/10.1007/s10934-020-00893-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00893-1

Keywords

Navigation