Skip to main content

Advertisement

Log in

Overlay Networks with Nonlinear Energy Scavenging and NOMA-Assisted Decoding: Security Performance Analysis

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Overlay networks allow the unlicensed transmitter (\(UT \)) to aid the licensed transmitter (\(LT \)) by sending the superimposed signal including messages of both \(UT \) and \(LT \) with a higher prerogative for \(LT \)’s message. Such unequal message prerogatives enable efficient non-orthogonal multiple access (NOMA)-assisted decoding, a.k.a. successive interference cancellation, at corresponding receivers. Alongside the license of accessing the frequency band of \(LT \), \(UT \) is further beneficial with its transmission powered merely by energy harvested from \(LT \). Realistically, radio frequency energy harvester is not linear and message transmission in overlay networks is prone to wire-tapping of eavesdroppers. Accordingly, this paper recommends an analysis framework for security performance metrics—secrecy throughput and secrecy outage probability—of overlay networks with nonlinear energy scavenging and NOMA-assisted decoding. The proposed framework facilitates in assessing and comparing security performance in indispensable specifications and serves perfectly as a design guideline. Obtained results reveal that overlay networks with NOMA-assisted decoding are more secure than its OMA and NOMA-unsupported decoding counterparts and suffer error floor at high saturation power threshold or high licensed transmit power. Further, their performance is enhanced with an increase in message processing time and distance between unlicensed and licensed transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Stage 1 is allocated merely for \(UT \) to harvest energy. Consequently, \(t_l\) is not message bearing signal. Nonetheless, to reduce the number of notations without engendering any confusion, we also imply \(t_l\) as the message bearing signal in Stage 2.

References

  1. Butt, M.M.; et al.: ML-assisted UE positioning: performance analysis and 5G architecture enhancements. IEEE Open J. Veh. Technol. 2, 377–388 (2021)

    Article  Google Scholar 

  2. Shang, X.; et al.: NVM-enhanced machine learning inference in 6G edge computing. IEEE Trans. Netw. Sci. Eng. (to appear)

  3. Alsabah, M.; et al.: 6G wireless communications networks: a comprehensive survey. IEEE Access 9, 148191–148243 (2021)

    Article  Google Scholar 

  4. Fakharian, M.M.: RF energy harvesting using high impedance asymmetric antenna array without impedance matching network. Radio Sci. 56(3), 1–10 (2021)

    Article  Google Scholar 

  5. Bhowmick, A.; et al.: Throughput maximization of a NOMA-based energy-harvesting UAV assisted CR network. IEEE Trans. Veh. Technol. 71(1), 362–374 (2022)

    Article  Google Scholar 

  6. Eltresy, N.A.; et al.: Silver sandwiched ITO based transparent antenna array for RF energy harvesting in 5g mid-range of frequencies. IEEE Access 9, 49476–49486 (2021)

    Article  Google Scholar 

  7. Gunasinghe, D.; et al.: Performance analysis of SWIPT for intelligent reflective surfaces for wireless communication. IEEE Commun. Lett. 25(7), 2201–2205 (2021)

    Article  Google Scholar 

  8. Pham-Thi-Dan, N.; et al.: Security analysis for cognitive radio network with energy scavenging capable relay over Nakagami-m fading channels. In: Proceedings of IEEE ISEE, pp. 68–72 (2019)

  9. Bouabdellah, M.; et al.: Cooperative energy harvesting cognitive radio networks with spectrum sharing and security constraints. IEEE Access 7, 173329–173343 (2019)

    Article  Google Scholar 

  10. Ge, L.; et al.: Performance analysis for multihop cognitive radio networks with energy harvesting by using stochastic geometry. IEEE IoT J. 7(2), 1154–1163 (2020)

    Google Scholar 

  11. Wang, D.; et al.: Primary privacy preserving with joint wireless power and information transfer for cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 6(2), 683–693 (2020)

    Article  Google Scholar 

  12. Ho-Van, K.; et al.: Relay-and-jammers selection for performance improvement of energy harvesting underlay cognitive networks. Arab. J. Sci. Eng. 47, 2649–2661 (2022)

    Article  Google Scholar 

  13. Aldababsa, M.; et al.: Joint transmit-and-receive antenna selection system for MIMO-NOMA with energy harvesting. IEEE Syst. J. (to appear)

  14. Solanki, S.; et al.: Performance analysis of piece-wise linear model of energy harvesting-based multiuser overlay spectrum sharing networks. IEEE OJ-CS 1, 1820–1836 (2020)

    Google Scholar 

  15. Ni, L.; et al.: Outage-constrained secrecy energy efficiency optimization for CRNs with non-linear energy harvesting. IEEE Access 7, 175213–175221 (2019)

    Article  Google Scholar 

  16. Wang, D.; et al.: Secure energy efficiency for NOMA based cognitive radio networks with nonlinear energy harvesting. IEEE Access 6, 62707–62716 (2018)

    Article  Google Scholar 

  17. Babaei, M.; et al.: BER performance of full-duplex cognitive radio network with nonlinear energy harvesting. IEEE Trans. Green Commun. Netw. 4(2), 448–460 (2020)

    Article  Google Scholar 

  18. Wang, F.; et al.: Secure resource allocation for polarization-based non-linear energy harvesting over 5G cooperative CRNs. IEEE Wirel. Commun. Lett. (to appear)

  19. Wang, D.; et al.: Performance analysis and resource allocations for a WPCN with a new nonlinear energy harvester model. IEEE OJCOMS 1, 1403–1424 (2020)

    Google Scholar 

  20. Zhu, Z.; et al.: Robust beamforming designs in secure MIMO SWIPT IoT networks with a nonlinear channel model. IEEE IoT J. 8(3), 1702–1715 (2021)

    Google Scholar 

  21. Pham-Minh, T.; et al.: Relay selection-and-jamming scheme with nonlinear energy harvesting. Wirel. Commun. Mob. Comput. 2021, 1717585 (2021)

  22. Pham-Minh, T.; et al.: Simultaneous jamming-and-transmitting scheme for spectrum-sharing relaying networks with non-linear energy scavenging. Wirel. Commun. Mob. Comput. 2021, 2368201 (2021)

  23. Alam, T.; et al.: Improved multifunctional MIMO cognitive radio system for integrated interweave-underlay operations. IEEE Trans. Microw. Theory Tech. 70(1), 631–640 (2022)

    Article  Google Scholar 

  24. Vu, T.H.; et al.: Performance analysis and deep learning design of underlay cognitive NOMA-based CDRT networks with imperfect SIC and co-channel interference. IEEE Trans. Commun. 69(12), 8159–8174 (2021)

    Article  Google Scholar 

  25. Shi, W.; et al.: Joint UL/DL resource allocation for UAV-aided full-duplex NOMA communications. IEEE Trans. Commun. 69(12), 8474–8487 (2021)

    Article  Google Scholar 

  26. Qin, P.; et al.: Joint 3D-location planning and resource allocation for XAPS-enabled C-NOMA in 6G heterogeneous Internet of Things. IEEE Trans. Veh. Technol. 70(10), 10594–10609 (2021)

    Article  Google Scholar 

  27. Liu, Y.; et al.: Outage performance analysis for SWIPT-based incremental cooperative NOMA networks with non-linear harvester. IEEE Commun. Lett. 24(2), 287–291 (2020)

    Article  Google Scholar 

  28. Li, X.; et al.: Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors. IEEE IoT J. 8(7), 5453–5467 (2021)

    Google Scholar 

  29. Singh, S.; et al.: On the outage performance of overlay cognitive STBC-NOMA system with imperfect SIC. IEEE Wirel. Commun. Lett. 10(11), 2587–2591 (2021)

    Article  Google Scholar 

  30. Le, A.T.; et al.: Enabling NOMA in overlay spectrum sharing in hybrid satellite-terrestrial systems. IEEE Access 9, 56616–56629 (2021)

    Article  Google Scholar 

  31. Ma, L.; et al.: On the performance of full-duplex cooperative NOMA with non-linear EH. IEEE Access 9, 145968–145976 (2021)

    Article  Google Scholar 

  32. Tran, H.M.; et al.: Secrecy outage performance of FD-NOMA relay system with multiple non-colluding eavesdroppers. IEEE Trans. Veh. Technol. 70(12), 12985–12997 (2021)

    Article  Google Scholar 

  33. Liu, R.; et al.: NOMA-based overlay cognitive integrated satellite-terrestrial relay networks with secondary network selection. IEEE Trans. Veh. Technol. 71(2), 2187–2192 (2022)

    Article  Google Scholar 

  34. Sun, X.; et al.: Secure and reliable transmission in mmWave NOMA relay networks with SWIPT. IEEE Syst. J. (to appear)

  35. Zheng, K.; et al.: Total throughput maximization of cooperative cognitive radio networks with energy harvesting. IEEE Trans. Wirel. Commun. 19(1), 533–546 (2020)

    Article  Google Scholar 

  36. Li, Q.; et al.: Cooperative spectrum sharing on SWIPT-based DF relay: an energy-aware retransmission approach. IEEE Access 7, 120802–120816 (2019)

    Article  Google Scholar 

  37. Gurjar, D.S.; et al.: Wireless information and power transfer for IoT applications in overlay cognitive radio networks. IEEE IoT J. 6(2), 3257–3270 (2019)

    Google Scholar 

  38. Li, M.; et al.: Improving the security and spectrum efficiency in overlay cognitive full-duplex wireless networks. IEEE Access 7, 68359–68372 (2019)

    Article  Google Scholar 

  39. Li, F.; et al.: Cognitive non-orthogonal multiple access with energy harvesting: an optimal resource allocation approach. IEEE Trans. Veh. Technol. 68(7), 7080–7095 (2019)

    Article  Google Scholar 

  40. Le, Q.N.; et al.: Full-duplex non-orthogonal multiple access cooperative overlay spectrum-sharing networks with SWIPT. IEEE Trans. Green Commun. Netw. 5(1), 322–334 (2021)

    Article  Google Scholar 

  41. Singh, C.K.; et al.: Energy harvesting in overlay cognitive NOMA systems with hardware impairments. IEEE Syst. J. 16(2), 2648–2659 (2022)

  42. Shukla, A.K.; et al.: Performance analysis of energy harvesting-assisted overlay cognitive NOMA systems with incremental relaying. IEEE OJCOMS 2, 1558–1576 (2021)

    Google Scholar 

  43. Ho-Van, K.; et al.: Impact of channel estimation-and-artificial noise cancellation imperfection on artificial noise-aided energy harvesting overlay networks. Telecommun. Syst. 78, 273–292 (2021)

    Article  Google Scholar 

  44. Ho-Van, K.; et al.: Impact of artificial noise on security capability of energy harvesting overlay networks. Wirel. Commun. Mob. Comput. 2021, 9976837 (2021)

  45. Ngoc-Hanh, D.; et al.: Secrecy analysis of overlay mechanism in radio frequency energy harvesting networks with jamming under Nakagami-m fading. Wirel. Pers. Commun. 120, 447–479 (2021)

    Article  Google Scholar 

  46. Ho-Van, K.; et al.: Overlay networks with jamming and energy harvesting: security analysis. Arab. J. Sci. Eng. 46, 9713–9724 (2021)

    Article  Google Scholar 

  47. Ho-Van, K.; et al.: Security improvement for energy harvesting based overlay cognitive networks with jamming-assisted full-duplex destinations. IEEE Trans. Veh. Technol. 70(11), 12232–12237 (2021)

    Article  Google Scholar 

  48. Prathima, A.; et al.: Performance analysis and optimization of bidirectional overlay cognitive radio networks with hybrid-SWIPT. IEEE Trans. Veh. Technol. 69(11), 13467–13481 (2020)

    Article  Google Scholar 

  49. Gurjar, D.S.; et al.: Performance of wireless powered cognitive radio sensor networks with nonlinear energy harvester. IEEE Sens. Lett. 3(8), 1–4 (2019)

    Article  Google Scholar 

  50. Agrawal, K.; et al.: NOMA with battery-assisted energy harvesting full-duplex relay. IEEE Trans. Veh. Technol. 69(11), 13952–13957 (2020)

    Article  Google Scholar 

  51. Gradshteyn, I.S.; et al.: Table of Integrals, Series and Products, 6th edn Academic, San Diego (2000)

    MATH  Google Scholar 

  52. Li, M.; et al.: Physical layer security in overlay cognitive radio networks with energy harvesting. IEEE Trans. Veh. Technol. 67(11), 11274–11279 (2018)

    Article  Google Scholar 

  53. Abramowitz, M.; et al.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing edn. U.S. Government Printing Office, Washington (1972)

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le-Thanh, T., Ho-Van, K. Overlay Networks with Nonlinear Energy Scavenging and NOMA-Assisted Decoding: Security Performance Analysis. Arab J Sci Eng 47, 14789–14807 (2022). https://doi.org/10.1007/s13369-022-06973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06973-5

Keywords

Navigation