Skip to main content
Log in

5G, 6G, and Beyond: Recent advances and future challenges

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

With the high demand for advanced services and the increase in the number of connected devices, current wireless communication systems are required to expand to meet the users’ needs in terms of quality of service, throughput, latency, connectivity, and security. 5G, 6G, and Beyond (xG) aim at bringing new radical changes to shake the wireless communication networks where everything will be fully connected fulfilling the requirements of ubiquitous connectivity over the wireless networks. This rapid revolution will transform the world of communication with more intelligent and sophisticated services and devices leading to new technologies operating over very high frequencies and broader bands. To achieve the objectives of the xG networks, several key technology enablers need to be performed, including massive MIMO, software-defined networking, network function virtualization, vehicular to everything, mobile edge computing, network slicing, terahertz, visible light communication, virtualization of the network infrastructure, and intelligent communication environment. In this paper, we investigated the recent advancements in the 5G/6G and Beyond systems. We highlighted and analyzed their different key technology enablers and use cases. We also discussed potential issues and future challenges facing the new wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/

References

  1. Oughton E, Frias Z, Russell T, Sicker D, Cleevely DD (2018) Towards 5g: scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure. Technol Forecast Soc Chang 133:141–155

    Article  Google Scholar 

  2. Yu H, Lee H, Jeon H (2017) What is 5g? emerging 5g mobile services and network requirements. Sustainability 9(10):1848

    Article  Google Scholar 

  3. Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M (2020) Toward 6g networks: use cases and technologies. IEEE Commun Mag 58(3):55–61

    Article  Google Scholar 

  4. Zhang Z, Xiao Y, Ma Z, Xiao M, Ding Z, Lei X, Karagiannidis GK, Fan P (2019) 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag 14 (3):28–41

    Article  Google Scholar 

  5. Frenger P, Tano R (2019) A technical look at 5g energy consumption and performance

  6. Bogale TE, Le LB (2016) Massive MIMO and mmWave for 5G wireless hetnet: potential benefits and challenges. IEEE Veh Technol Mag 11(1):64–75

  7. Shafi M, Jha RK, Sabraj M (2020) A survey on security issues of 5G NR: perspective of artificial dust and artificial rain. J Netw Comput Appl, vol 160

  8. Zaidi Z, Friderikos V, Yousaf Z, Fletcher S, Dohler M, Aghvami H (2018) Will SDN be part of 5G? IEEE Commun Surveys Tutor 20(4):3220–3258

    Article  Google Scholar 

  9. Cho H. -H., Lai C. -F., Shih TK, Chao H. -C. (2014) Integration of SDR and SDN for 5G. Ieee Access 2:1196–1204

    Article  Google Scholar 

  10. Bizanis N, Kuipers FA (2016) SDN And virtualization solutions for the internet of things: a survey. IEEE Access 4:5591–5606

    Article  Google Scholar 

  11. Sun S, Gong L, Rong B, Lu K (2015) An intelligent SDN framework for 5G heterogeneous networks. IEEE Commun Mag 53(11):142–147

    Article  Google Scholar 

  12. Gandotra P, Jha RK (2017) A survey on green communication and security challenges in 5G wireless communication networks. J Netw Comput Appl 96:39–61

    Article  Google Scholar 

  13. Gao Z, Dai L, Mi D, Wang Z, Imran MA, Shakir MZ (2015) Mmwave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wirel Commun 22(5):13–21

    Article  Google Scholar 

  14. Salem AA, El-Rabaie S, Shokair M (2020) A proposed efficient hybrid precoding algorithm for millimeter wave massive MIMO 5G networks. Wirel Pers Commun 112(1):149–167

    Article  Google Scholar 

  15. Kour H, JHA R (2020) Half duplex radio: towards green 5G NR. IEEE Consum Electron Mag

  16. ZHANG P, Tao YZ, ZHANG Z (2016) Survey of several key technologies for 5G. J Commun 37(7):15–29

    Google Scholar 

  17. An J, Yang K, Wu J, Ye N, Guo S, Liao Z (2017) Achieving sustainable ultra-dense heterogeneous networks for 5G. IEEE Commun Mag 55(12):84–90

    Article  Google Scholar 

  18. Dighriri M, Alfoudi ASD, Lee GM, Baker T (2016) Data traffic model in machine to machine communications over 5G network slicing. In: 2016 9th international conference on developments in eSystems engineering (deSE). IEEE, pp 239–244

  19. Afolabi I, Taleb T, Samdanis K, Ksentini A, Flinck H (2018) Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surveys Tutor 20(3):2429–2453

    Article  Google Scholar 

  20. Da Silva I, Mildh G, Kaloxylos A, Spapis P, Buracchini E, Trogolo A, Zimmermann G, Bayer N (2016) Impact of network slicing on 5G radio access networks. In: 2016 European conference on networks and communications (EuCNC). IEEE, pp 153–157

  21. Dissanayak MB, Ekanayake N (2021) On the exact performance analysis of molecular communication via diffusion for internet of bio-nano things. IEEE Trans Nanobiosci

  22. Mahmoud HHH, Amer AA, Ismail T (2021) 6G: a comprehensive survey on technologies, applications, challenges, and research problems. Trans Emerging Telecommun Technol, pp e4233

  23. Akyildiz IF, Kak A (2019) The internet of space things/cubesats: a ubiquitous cyber-physical system for the connected world. Comput Netw 150:134–149

    Article  Google Scholar 

  24. Du L, Li L, Ngo HQ, Mai TC, Matthaiou M (2021) Cell-free massive mimo. IEEE Trans Commun, Joint maximum-ratio and zero-forcing precoder with power control

    Google Scholar 

  25. Akyildiz IF, Kak A, Nie S (2020) 6G and beyond: the future of wireless communications systems. IEEE Access 8:133995–134030

    Article  Google Scholar 

  26. Cao J, Ma M, Li H, Ma R, Sun Y, Yu P, Xiong L (2019) A survey on security aspects for 3GPP 5G networks. IEEE Commun Surveys Tutor 22(1):170–195

    Article  Google Scholar 

  27. Choudhary G, Kim J, Sharma V (2018) Security of 5G-mobile backhaul networks: a survey. J Wireless Mobile Netw, Ubiquitous Comput Depend Appl 9(4):41–70

    Google Scholar 

  28. Suomalainen J, Juhola A, Shahabuddin S, Mämmelä A., Ahmad I (2020) Machine learning threatens 5g security. IEEE Access 8:190822–190842

    Article  Google Scholar 

  29. Alturfi S. M, Marhoon H. A, Al-Musawi B (2020) Internet of things security techniques: a survey. AIP Conf Proc 2290(1):040016. AIP Publishing LLC

    Article  Google Scholar 

  30. Thembelihle D, Rossi M, Munaretto D (2017) Softwarization of mobile network functions towards agile and energy efficient 5g architectures: a survey. Wireless Commun Mobile Comput, vol 2017

  31. Gupta A, Jha RK (2015) A survey of 5g network: architecture and emerging technologies. IEEE access 3:1206–1232

    Article  Google Scholar 

  32. Liolis K, Geurtz A, Sperber R, Schulz D, Watts S, Poziopoulou G, Evans B, Wang N, Vidal O, Tiomela Jou B et al (2019) Use cases and scenarios of 5g integrated satellite-terrestrial networks for enhanced mobile broadband: the sat5g approach. Int J Satell Commun Netw 37(2):91–112

    Article  Google Scholar 

  33. Ji X, Huang K, Jin L, Tang H, Liu C, Zhong Z, You W, Xu X, Zhao H, Wu J, Yi M (2018) Overview of 5G csecurity technology. Science China Information Sciences 61(8):1–25

    Article  Google Scholar 

  34. Ferrag MA, Maglaras L, Argyriou A, Kosmanos D, Janicke H (2018) Security for 4G and 5G cellular networks: a survey of existing authentication and privacy-preserving schemes. J Netw Comput Appl 101:55–82

    Article  Google Scholar 

  35. Zhang S, Wang Y, Zhou W (2019) Towards secure 5G networks: a Survey. Comput Netw 162:106871

    Article  Google Scholar 

  36. Saad W, Bennis M, Chen M (2020) A vision of 6g wireless systems: applications, trends, technologies, and open research problems. IEEE Netw 34(3):134–142

    Article  Google Scholar 

  37. Dibaei M, Ghaffari A (2020) Full-duplex medium access control protocols in wireless networks: a survey. Wirel Netw 26(4):2825–2843

    Article  Google Scholar 

  38. Foukas X, Patounas G, Elmokashfi A, Marina MK (2017) Network slicing in 5G: survey and challenges. IEEE Commun Mag 55(5):94–100

    Article  Google Scholar 

  39. Ordonez-Lucena J, Ameigeiras P, Lopez D, Ramos-Munoz JJ, Lorca J, Folgueira J (2017) Network slicing for 5g with sdn/nfv: concepts, architectures, and challenges. IEEE Commun Mag 55(5):80–87

    Article  Google Scholar 

  40. Hong S (2019) Security vulnerability and countermeasure on 5G networks survey. J Digital Convergence 17(12):197–202

    Google Scholar 

  41. Walia JS, Hämmäinen H, Kilkki K, Yrjölä S (2019) 5G network slicing strategies for a smart factory. Comput Ind 111:108–120

    Article  Google Scholar 

  42. Vu TK, Liu C. -F., Bennis M, Debbah M, Latva-Aho M, Hong CS (2017) Ultra-reliable and low latency communication in mmwave-enabled massive mimo networks. IEEE Commun Lett 21 (9):2041–2044

    Article  Google Scholar 

  43. Jungnickel V, Manolakis K, Zirwas W, Panzner B, Braun V, Lossow M, Sternad M, Apelfröjd R., Svensson T (2014) The role of small cells, coordinated multipoint, and massive mimo in 5g. IEEE commun Magazine 52(5):44–51

    Article  Google Scholar 

  44. Liu X, Liu Y, Wang X, Lin H (2017) Highly efficient 3-d resource allocation techniques in 5g for noma-enabled massive mimo and relaying systems. IEEE J Select Areas Commun 35(12):2785–2797

    Article  Google Scholar 

  45. Albreem MA, Alsharif MH, Kim S (2020) A low complexity near-optimal iterative linear detector for massive MIMO in realistic radio channels of 5G communication systems. Entropy 4:22

    MathSciNet  Google Scholar 

  46. Mishra PK, Pandey S, Biswash SK (2016) Efficient resource management by exploiting d2d communication for 5g networks. IEEE Access 4:9910–9922

    Article  Google Scholar 

  47. Yang H, Seet B-C, Hasan SF, Chong PHJ, Chung MY (2016) Radio resource allocation for d2d-enabled massive machine communication in the 5g era, in. In: 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp 55–60

  48. Wang M, Yan Z (2015) Security in D2D communications: a review. In: 2015 IEEE Trustcom/BigDataSE/ISPA,. IEEE, vol 1, pp 1199–1204

  49. Ahmad I, Kumar T, Liyanage M, Okwuibe J, Ylianttila M, Gurtov A (2017) 5G security: analysis of threats and solutions. In: 2017 IEEE conference on standards for communications and networking, CSCN 2017, pp 193–199

  50. Ahmad I, Shahabuddin S, Kumar T, Okwuibe J, Gurtov A, Ylianttila M (2019) Security for 5G and beyond. IEEE Commun Surveys Tutor 21(4):3682–3722

    Article  Google Scholar 

  51. Anderson J, Hu H, Agarwal U, Lowery C, Li H, Apon A (2016) Performance considerations of network functions virtualization using containers. In: 2016 international conference on computing, networking and communications (ICNC). IEEE, pp 1–7

  52. Herrera JdJG, Vega JFB (2016) Network functions virtualization: a survey. IEEE Lat Am Trans 14(2):983–997

    Article  Google Scholar 

  53. Zhou Y, Yu W (2014) Optimized backhaul compression for uplink cloud radio access network. IEEE J Select Areas Commun 32(6):1295–1307

    Article  Google Scholar 

  54. Han Q, Liang S, Zhang H (2015) Mobile cloud sensing, big data, and 5g networks make an intelligent and smart world. IEEE Netw 29(2):40–45

    Article  Google Scholar 

  55. Barbarossa S, Sardellitti S, Di Lorenzo P (2014) Communicating while computing: distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Proc Mag 31(6):45–55

    Article  Google Scholar 

  56. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) Mobile edge computing: Survey and research outlook, arXiv:1701.01090

  57. Beck MT, Werner M, Feld S, Schimper S (2014) Mobile edge computing: a taxonomy. In: Proc of the sixth international conference on advances in future internet. Citeseer, pp 48–55

  58. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key technology towards 5g. ETSI White Paper 11(11):1–16

    Google Scholar 

  59. Wang H-M, Zheng T-X, Yuan J, Towsley D, Lee MH (2016) Physical layer security in heterogeneous cellular networks. IEEE Trans Commun 64(3):1204–1219

    Article  Google Scholar 

  60. Yang H, Alphones A, Xiong Z, Niyato D, Zhao J, Wu K (2020) Artificial-intelligence-enabled intelligent 6g networks. IEEE Netw 34(6):272–280

    Article  Google Scholar 

  61. Papadopoulos H, Wang C, Bursalioglu O, Hou X, Kishiyama Y (2016) Massive MIMO technologies and challenges towards 5G. IEICE Trans Commun E99B(3):602–621

    Article  Google Scholar 

  62. Borgaonkar R, Redon K, Seifert J. -P. (2011) Security analysis of a femtocell device. In: Proceedings of the 4th international conference on security of information and networks, pp 95–102

  63. Gohil A, Modi H, Patel SK (2013) 5G technology of mobile communication: a survey. In: 2013 international conference on intelligent systems and signal processing. ISSP 2013, pp 288–292

  64. Ahmad I, Liyanage M, Shahabuddin S, Ylianttila M, Gurtov A (2018) Design principles for 5G security. A Comprehensive Guide to 5G Security:75–98

  65. Wang W, Zhang Q (2014) Local cooperation architecture for self-healing femtocell networks. IEEE Wirel Commun 21(2):42–49

    Article  Google Scholar 

  66. Letaief KB, Chen W, Shi Y, Zhang J, Zhang Y. -J. A. (2019) The roadmap to 6g: Ai empowered wireless networks. IEEE Commun Mag 57(8):84–90

    Article  Google Scholar 

  67. Popovski P, Trillingsgaard KF, Simeone O, Durisi G (2018) 5G wireless network slicing for embb, urllc, and mmtc. A communication-theoretic view, Ieee Access 6:55765–55779

    Article  Google Scholar 

  68. Li X, Ni R, Chen J, Lyu Y, Rong Z, Du R (2020) End-to-end network slicing in radio access network, transport network and core network domains. IEEE Access 8:29525–29537

    Article  Google Scholar 

  69. Khan LU, Yaqoob I, Tran NH, Han Z, Hong CS (2020) Network slicing: recent advances, taxonomy, requirements, and open research challenges. IEEE Access 8:36009–36028

    Article  Google Scholar 

  70. Routray SK, Mohanty S (2020) Why 6g?: motivation and expectations of next-generation cellular networks, arXiv:1903.04837

  71. Panwar N, Sharma S, Singh AK (2016) A survey on 5G: the next generation of mobile communication. Physical Commun 18:64–84

    Article  Google Scholar 

  72. Chih-Lin I, Rowell C, Han S, Xu Z, Li G, Pan Z (2014) Toward green and soft: a 5g perspective. IEEE Commun Mag 52(2):66–73

    Article  Google Scholar 

  73. Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5g. IEEE Commun Mag 52(2):74–80

    Article  Google Scholar 

  74. An J, Yang K, Wu J, Ye N, Guo S, Liao Z (2017) Achieving sustainable ultra-dense heterogeneous networks for 5g. IEEE Commun Mag 55(12):84–90

    Article  Google Scholar 

  75. Hossain E, Rasti M, Tabassum H, Abdelnasser A (2014) Evolution toward 5g multi-tier cellular wireless networks: an interference management perspective. IEEE Wirel Commun 21(3):118–127

    Article  Google Scholar 

  76. Salahdine F, Ghazi HE, Kaabouch N, Fihri WF (2016) Matched filter detection with dynamic threshold for cognitive radio networks. Int Conf Wireless Netw Mobile Commun, WINCOM 2015

  77. Salahdine F, Ghribi E, Kaabouch N (2020) Metrics for evaluating the efficiency of compressing sensing techniques, in. In: 2020 international conference on information networking (ICOIN). IEEE, pp 562–567

  78. Chen K, Duan R (2011) C-ran the road towards green ran. China Mobile Res Inst, White Paper, vol 2

  79. Liu J, Zhao T, Zhou S, Cheng Y, Niu Z (2014) Concert: a cloud-based architecture for next-generation cellular systems. IEEE Wirel Commun 21(6):14–22

    Article  Google Scholar 

  80. Wu J, Zhang Z, Hong Y, Wen Y (2015) Cloud radio access network (c-ran): a primer. IEEE Netw 29(1):35–41

    Article  Google Scholar 

  81. Wang M, Zhu T, Zhang T, Zhang J, Yu S, Zhou W (2020) Security and privacy in 6g networks: new areas and new challenges. Digital Communications Netw 6(3):281–291

    Article  Google Scholar 

  82. Usman M, Gebremariam AA, Raza U, Granelli F (2015) A software-defined device-to-device communication architecture for public safety applications in 5g networks. IEEE Access 3:1649–1654

    Article  Google Scholar 

  83. Akyildiz IF, Nie S, Lin S-C, Chandrasekaran M (2016) 5g roadmap: 10 key enabling technologies. Comput Netw 106:17–48

    Article  Google Scholar 

  84. De Ree M, Mantas G, Radwan A, Mumtaz S, Rodriguez J, Otung IE (2019) Key management for beyond 5g mobile small cells: a survey. IEEE Access 7:59200–59236

    Article  Google Scholar 

  85. Li QC, Niu H, Papathanassiou AT, Wu G (2014) 5G network capacity: key elements and technologies. IEEE Veh Technol Mag 9(1):71–78

    Article  Google Scholar 

  86. Maghsudi S, Hossain E (2016) Multi-armed bandits with application to 5g small cells. IEEE Wirel Commun 23(3):64–73

    Article  Google Scholar 

  87. Sun S, Kadoch M, Gong L, Rong B (2015) Integrating network function virtualization with sdr and sdn for 4g/5g networks. IEEE Netw 29(3):54–59

    Article  Google Scholar 

  88. Athley F, Tombaz S, Semaan E, Tidestav C, Furuskär A (2015) Providing extreme mobile broadband using higher frequency bands, beamforming, and carrier aggregation. In: 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, pp 1370–1374

  89. Guo J, Durrani S, Zhou X, Yanikomeroglu H (2017) Massive machine type communication with data aggregation and resource scheduling. IEEE Trans Commun 65(9):4012–4026

    Article  Google Scholar 

  90. Datsika E, Antonopoulos A, Zorba N, Verikoukis C (2017) Software defined network service chaining for ott service providers in 5g networks. IEEE Commun Mag 55(11):124–131

    Article  Google Scholar 

  91. Mezzavilla M, Zhang M, Polese M, Ford R, Dutta S, Rangan S, Zorzi M (2018) End-to-end simulation of 5g mmwave networks. IEEE Commun Surveys Tutor 20(3):2237–2263

    Article  Google Scholar 

  92. Sakai M, Kamohara K, Iura H, Nishimoto H, Ishioka K, Murata Y, Yamamoto M, Okazaki A, Nonaka N, Suyama S, Mashino J, Okamura A, Okumura Y (2020) Experimental field trials on MU-MIMO transmissions for high SHF wide-band massive MIMO in 5G. IEEE Trans Wirel Commun 19(4):2196–2207

    Article  Google Scholar 

  93. Prasad KNV, Hossain E, Bhargava VK (2017) Energy efficiency in massive MIMO-based 5G networks: opportunities and challenges. IEEE Wirel Commun 24(3):86–94

    Article  Google Scholar 

  94. de Almeida AM, Lenzi MK, Lenzi EK (2020) A survey of fractional order calculus applications of multiple-input, multiple-output (Mimo) process control. Fractal Frac 4(2):1–31

    Google Scholar 

  95. Carrera DF, Vargas-Rosales C, Azpilicueta L, Galaviz-Aguilar JA (2020) Comparative study of channel estimators for massive MIMO 5G NR systems. IET Commun 14(7):1175–1184

    Article  Google Scholar 

  96. Araújo D. C., Maksymyuk T, de Almeida AL, Maciel T, Mota JC, Jo M (2016) Massive MIMO: survey and future research topics. IET Commun 10(15):1938–1946

    Article  Google Scholar 

  97. Loh TH, Heliot F, Cheadle D, Fielder T (2020) An assessment of the radio frequency electromagnetic field exposure from a massive MIMO 5G testbed:1–5

  98. Sellami A, Nasraoui L, Atallah LN (2020) Multi-stage localization for massive MIMO 5G systems. IEEE Vehicular Technol Conf, vol 2020

  99. Panzner B, Zirwas W, Dierks S, Lauridsen M, Mogensen P, Pajukoski K, Miao D (2014) Deployment and implementation strategies for massive MIMO in 5G. In: 2014 IEEE Globecom Workshops, GC Wkshps 2014, pp 346–351

  100. Dai B, Yu W (2014) Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access 2:1326–1339

    Article  MathSciNet  Google Scholar 

  101. Wu S, Wang CX, Aggoune EHM, Alwakeel MM, He Y (2014) A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels. IEEE J Select Areas Commun 32(6):1207–1218

    Article  Google Scholar 

  102. Jungnickel V, Manolakis K, Zirwas W, Panzner B, Braun V, Lossow M, Sternad M, Apelfrȯjd R., Svensson T (2014) The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag 52(5):44–51

    Article  Google Scholar 

  103. Agrawal SK, Sharma K (2016) 5g millimeter wave (mmwave) communications. In: 2016 3rd international conference on computing for sustainable global development (INDIACom), pp 3630–3634

  104. Akoum S, El Ayach O, Heath RW (2012) Coverage and capacity in mmwave cellular systems. In: 2012 conference record of the forty sixth asilomar conference on signals, systems and computers (ASILOMAR), pp 688–692

  105. Niu Y, Li Y, Jin D, Su L, Vasilakos AV (2015) A survey of millimeter wave communications (mmwave) for 5g: opportunities and challenges. Wireless Netw 21(8):2657–2676

    Article  Google Scholar 

  106. Giordani M, Mezzavilla M, Zorzi M (2016) Initial access in 5g mmwave cellular networks. IEEE Commun Mag 54(11):40– 47

    Article  Google Scholar 

  107. Giordani M, Polese M, Roy A, Castor D, Zorzi M (2018) A tutorial on beam management for 3gpp nr at mmwave frequencies. IEEE Commun Surveys Tutor 21(1):173–196

    Article  Google Scholar 

  108. Akyildiz IF, Lee W-Y, Chowdhury KR (2009) Crahns: cognitive radio ad hoc networks. AD hoc networks 7(5):810–836

    Article  Google Scholar 

  109. Ahmad I, Kumar T, Liyanage M, Okwuibe J, Ylianttila M, Gurtov A (2018) Overview of 5G security challenges and solutions. IEEE Commun Standards Magazine 2(1):36–43

    Article  Google Scholar 

  110. Li Y, Phan LTX, Loo BT (2016) Network functions virtualization with soft real-time guarantees. In: IEEE INFOCOM 2016-The 35th annual IEEE international conference on computer communications. IEEE, pp 1–9

  111. Siddique U, Tabassum H, Hossain E, Kim DI (2015) Wireless backhauling of 5g small cells: challenges and solution approaches. IEEE Wirel Commun 22(5):22–31

    Article  Google Scholar 

  112. Dong Y, Chawla NV, Swami A (2017) Metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 135–144

  113. Wang N, Hossain E, Bhargava VK (2015) Backhauling 5g small cells: a radio resource management perspective. IEEE Wirel Commun 22(5):41–49

    Article  Google Scholar 

  114. Afolabi I, Taleb T, Samdanis K, Ksentini A, Flinck H (2018) Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surveys Tutorials 20 (3):2429–2453

    Article  Google Scholar 

  115. Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. European Phys J B-Condensed Matter Complex Syst 26(4):521–529

    Article  Google Scholar 

  116. Mogensen P, Pajukoski K, Tiirola E, Vihriala J, Lahetkangas E, Berardinelli G, Tavares FM, Mahmood NH, Lauridsen M, Catania D et al (2014) Centimeter-wave concept for 5g ultra-dense small cells. In: 2014 IEEE 79th vehicular technology conference (VTC Spring). IEEE, pp 1–6

  117. Rao RS, Kumar Ashish, Srivastava N (2020) Full-duplex wireless communication in cognitive radio networks: a survey. In: Advances in VLSI, communication, and signal processing. Springer, pp 261–277

  118. Zhao Y (2020) A survey of 6G wireless communications: emerging technologies, pp 1–10

  119. Quadri A, Manesh MR, Kaabouch N (2017) Noise cancellation in cognitive radio systems: a performance comparison of evolutionary algorithms. In: 2017 IEEE 7th annual computing and communication workshop and conference (CCWC). IEEE, pp 1–7

  120. Mishra PK, Pandey S, Biswash SK (2016) Efficient resource management by exploiting D2D communication for 5G networks. IEEE Access 4:9910–9922

    Article  Google Scholar 

  121. Karachontzitis S, Timotheou S, Krikidis I, Berberidis K (2014) Security-aware max–min resource allocation in multiuser ofdma downlink. IEEE Trans Inf Forensics Security 10(3):529–542

    Article  Google Scholar 

  122. Li Y, Zhou T, Xu J, Li Z, Wang H (2011) Adaptive tdd ul/dl slot utilization for cellular controlled d2d communications. In: 2011 Global mobile congress. IEEE, pp 1–6

  123. Akpakwu GA, Silva BJ, Hancke GP, Abu-Mahfouz AM (2017) A survey on 5g networks for the internet of things: communication technologies and challenges. IEEE Access 6:3619–3647

    Article  Google Scholar 

  124. Salahdine F, Kaabouch N (2020) Security threats, detection, and countermeasures for physical layer in cognitive radio networks: a survey. Phys Commun 39:101001

    Article  Google Scholar 

  125. Zhao M, Kumar A, Ristaniemi T, Chong PHJ (2017) Machine-to-machine communication and research challenges: a survey. Wirel Pers Commun 97(3):3569–3585

    Article  Google Scholar 

  126. Weyrich M, Schmidt J-P, Ebert C (2014) Machine-to-machine communication. IEEE Softw 31(4):19–23

    Article  Google Scholar 

  127. Amodu OA, Othman M (2018) Machine-to-machine communication: an overview of opportunities. Comput Netw 145:255–276

    Article  Google Scholar 

  128. Ali A, Shah GA, Farooq MO, Ghani U (2017) Technologies and challenges in developing machine-to-machine applications: a survey. J Netw Comput Appl 83:124–139

    Article  Google Scholar 

  129. Amodu OA, Othman M (2018) Machine-to-machine communication: an overview of opportunities. Comput Netw 145:255–276

    Article  Google Scholar 

  130. Wunder G, Jung P, Kasparick M, Wild T, Schaich F, Chen Y, Ten Brink S, Gaspar I, Michailow N, Festag A et al (2014) 5gnow: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun Mag 52(2):97–105

    Article  Google Scholar 

  131. Ejaz W, Anpalagan A, Imran MA, Jo M, Naeem M, Qaisar SB, Wang W (2016) Internet of things (iot) in 5g wireless communications. IEEE Access 4:10310–10314

    Article  Google Scholar 

  132. Dighriri M, Alfoudi ASD, Lee GM, Baker T (2016) Data traffic model in machine to machine communications over 5g network slicing. In: 2016 9th International conference on developments in eSystems engineering (deSE). IEEE, pp 239–244

  133. Garcia-Roger D, González EE, Martín-Sacristán D, Monserrat JF (2020) V2x support in 3gpp specifications: from 4g to 5g and beyond. IEEE Access 8:190946–190963

    Article  Google Scholar 

  134. Salahdine F, Aggarwal S, Nasipuri A (2022) Short-term traffic congestion prediction with deep learning for lora networks. In: SoutheastCon 2022, pp 261–268

  135. Rahim A, Malik PK, Ponnapalli VS (2020) State of the art: a review on vehicular communications, impact of 5g, fractal antennas for future communication. In: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4s 2019). Springer, pp 3–153–15

  136. Hussain R, Hussain F, Zeadally S (2019) Integration of vanet and 5g security: a review of design and implementation issues. Futur Gener Comput Syst 101:843–864

    Article  Google Scholar 

  137. Lai C, Lu R, Zheng D, Shen XS (2020) Security and privacy challenges in 5g-enabled vehicular networks. IEEE Netw 34(2):37–45

    Article  Google Scholar 

  138. El-Rewini Z, Sadatsharan K, Selvaraj DF, Plathottam SJ, Ranganathan P (2020) Cybersecurity challenges in vehicular communications. Vehicular Commun 23:100214

    Article  Google Scholar 

  139. Arena F, Pau G (2019) An overview of vehicular communications. Future Internet 11(2):27

    Article  Google Scholar 

  140. Mahmood A, Zhang WE, Sheng QZ (2019) Software-defined heterogeneous vehicular networking: the architectural design and open challenges. Future Internet 11(3):70

    Article  Google Scholar 

  141. Sun X, Ansari N (2016) Edgeiot: Mobile edge computing for the internet of things. IEEE Commun Mag 54(12):22–29

    Article  Google Scholar 

  142. Abbas N, Zhang Y, Taherkordi A, Skeie T (2017) Mobile edge computing: a survey. IEEE Internet Things J 5(1):450–465

    Article  Google Scholar 

  143. Ahmed E, Rehmani MH (2017) Mobile edge computing: opportunities, solutions and challenges

  144. Naughton L, Daly H (2020) Augmented humanity: data, privacy and security. In: Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity. Springer, pp 73–93

  145. Sharma SK, Woungang I, Anpalagan A, Chatzinotas S (2020) Toward tactile internet in beyond 5g era: recent advances, current issues, and future directions. IEEE Access 8:56948–56991

    Article  Google Scholar 

  146. Wang H, Chen S, Xu H, Ai M, Shi Y (2015) Softnet: a software defined decentralized mobile network architecture toward 5g. IEEE Netw 29(2):16–22

    Article  Google Scholar 

  147. Chen T, Matinmikko M, Chen X, Zhou X, Ahokangas P (2015) Software defined mobile networks: concept, survey, and research directions. IEEE Commun Mag 53(11):126–133

    Article  Google Scholar 

  148. Mijumbi R, Serrat J, Gorricho J-L, Latré S, Charalambides M, Lopez D (2016) Management and orchestration challenges in network functions virtualization. IEEE Commun Mag 54(1):98–105

    Article  Google Scholar 

  149. Damnjanovic A, Montojo J, Wei Y, Ji T, Luo T, Vajapeyam M, Yoo T, Song O, Malladi D (2011) A survey on 3gpp heterogeneous networks. IEEE Wireless Commun 18(3):10– 21

    Article  Google Scholar 

  150. Han F, Zhao S, Zhang L, Wu J (2016) Survey of strategies for switching off base stations in heterogeneous networks for greener 5g systems. IEEE Access 4:4959–4973

    Article  Google Scholar 

  151. Al-Qasrawi IS (2017) Proposed technologies for solving future 5G heterogeneous networks challenges. Int J Comput Appl 7(1):1–8

    Google Scholar 

  152. Khandekar A, Bhushan N, Tingfang J, Vanghi V (2010) Lte-advanced: heterogeneous networks. In: 2010 European wireless conference (EW). IEEE, pp 978–982

  153. Cai S, Che Y, Duan L, Wang J, Zhou S, Zhang R (2016) Green 5g heterogeneous networks through dynamic small-cell operation. IEEE J Select Areas Commun 34(5):1103–1115

    Article  Google Scholar 

  154. Salahdine F, Opadere J, Liu Q, Han T, Zhang N, Wu S (2021) A survey on sleep mode techniques for ultra-dense networks in 5g and beyond. Comput Netw 201:108567

    Article  Google Scholar 

  155. Liu C, Natarajan B, Xia H (2015) Small cell base station sleep strategies for energy efficiency. IEEE Trans Veh Technol 65(3):1652–1661

    Article  Google Scholar 

  156. Rost P, Mannweiler C, Michalopoulos DS, Sartori C, Sciancalepore V, Sastry N, Holland O, Tayade S, Han B, Bega D et al (2017) Network slicing to enable scalability and flexibility in 5g mobile networks. IEEE Commun Mag 55(5):72–79

    Article  Google Scholar 

  157. Zhang H, Liu N, Chu X, Long K, Aghvami A-H, Leung VC (2017) Network slicing based 5g and future mobile networks: mobility, resource management, and challenges. IEEE commun Mag 55 (8):138–145

    Article  Google Scholar 

  158. Galinina O, Pyattaev A, Andreev S, Dohler M, Koucheryavy Y (2015) 5G multi-rat lte-wifi ultra-dense small cells: performance dynamics, architecture, and trends. IEEE J Select Areas Commun 33(6):1224–1240

    Article  Google Scholar 

  159. Li S, Xu LD, Zhao S (2018) 5G internet of things: a survey. J Industr Inf Integ 10:1–9

    Google Scholar 

  160. Busari SA, Huq KMS, Mumtaz S, Dai L, Rodriguez J (2018) Millimeter-wave massive MIMO communication for future wireless systems: a survey. IEEE Commun Surveys Tutorials 20(2):836–869

    Article  Google Scholar 

  161. Ge X, Yang J, Gharavi H, Sun Y (2017) Energy efficiency challenges of 5g small cell networks. IEEE Commun Mag 55(5):184–191

    Article  Google Scholar 

  162. Bai Q, Nossek JA (2015) Energy efficiency maximization for 5g multi-antenna receivers. Trans Emerging Telecommun Technol 26(1):3–14

    Article  Google Scholar 

  163. Zi R, Ge X, Thompson J, Wang C-X, Wang H, Han T (2016) Energy efficiency optimization of 5g radio frequency chain systems. IEEE J Select Areas Commun 34(4):758–771

    Article  Google Scholar 

  164. Akpakwu GA, Silva BJ, Hancke GP, Abu-Mahfouz AM (2017) A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6:3619–3647

    Article  Google Scholar 

  165. Hong X, Wang J, Wang C-X, Shi J (2014) Cognitive radio in 5g: a perspective on energy-spectral efficiency trade-off. IEEE Commun Mag 52(7):46–53

    Article  Google Scholar 

  166. Wu G, Yang C, Li S, Li GY (2015) Recent advances in energy-efficient networks and their application in 5g systems. IEEE Wirel Commun 22(2):145–151

    Article  Google Scholar 

  167. Buzzi S, Chih-Lin I, Klein TE, Poor HV, Yang C, Zappone A (2016) A survey of energy-efficient techniques for 5g networks and challenges ahead. IEEE J Select Areas Commun 34(4):697–709

    Article  Google Scholar 

  168. Mousa SH, Ismail M, Nordin R, Abdullah NF (2020) Effective wide spectrum sharing techniques relying on CR technology toward 5G: a survey. J Commun 15(2):122–147

    Article  Google Scholar 

  169. Salahdine F, El Ghazi H (2017) A real time spectrum scanning technique based on compressive sensing for cognitive radio networks. In: 2017 IEEE 8th annual ubiquitous computing, electronics and mobile communication conference, UEMCON 2017, vol 2018-Janua, pp 506–511

  170. Salahdine F, Kaabouch N, El Ghazi H (2016) A survey on compressive sensing techniques for cognitive radio networks. Phys Commun 20:61–73

    Article  Google Scholar 

  171. Reyes H, Subramaniam S, Kaabouch N, Hu WC (2016) A spectrum sensing technique based on autocorrelation and Euclidean distance and its comparison with energy detection for cognitive radio networks. Comput Electr Eng 52:319–327

    Article  Google Scholar 

  172. Salahdine F (2018) Compressive spectrum sensing for cognitive radio networks, arXiv:1802.03674

  173. Sun S, Gong L, Rong B, Lu K (2015) An intelligent sdn framework for 5g heterogeneous networks. IEEE Commun Mag 53(11):142–147

    Article  Google Scholar 

  174. Khan R, Kumar P, Jayakody DNK, Liyanage M (2020) A survey on security and privacy of 5G technologies: potential solutions, recent advancements, and future directions. IEEE Commun Surveys Tutorials 22(1):196–248

    Article  Google Scholar 

  175. Chowdhury MZ, Shahjalal M, Ahmed S, Jang YM (2020) 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society 1:957–975

    Article  Google Scholar 

  176. Zanzi L, Albanese A, Sciancalepore V, Costa-Pérez X (2020) Nsbchain: a secure blockchain framework for network slicing brokerage. ICC IEEE Int Conf Commun:1–7

  177. Khan LU, Yaqoob I, Tran NH, Han Z, Hong CS (2020) Network slicing: recent advances, taxonomy, requirements, and open research challenges. IEEE Access 8:36009–36028

    Article  Google Scholar 

  178. Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M (2020) Toward 6g networks: use cases and technologies. IEEE Commun Mag 58(3):55–61

    Article  Google Scholar 

  179. Arabia-Obedoza MR, Rodriguez G, Johnston A, Salahdine F, Kaabouch N (2020) Social engineering attacks a reconnaissance synthesis analysis. In: 2020 11th IEEE annual ubiquitous computing, electronics & mobile communication conference (UEMCON). IEEE, pp 0843?0848

  180. Liu Q, Han T, Moges E (2020) Edgeslice: slicing wireless edge computing network with decentralized deep reinforcement learning. arXiv:2003.12911

  181. Salahdine F, Liu Q, Han T (2022) Towards secure and intelligent network slicing for 5g networks. IEEE Open J Comput Soc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Salahdine.

Ethics declarations

Conflict of interest

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahdine, F., Han, T. & Zhang, N. 5G, 6G, and Beyond: Recent advances and future challenges. Ann. Telecommun. 78, 525–549 (2023). https://doi.org/10.1007/s12243-022-00938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-022-00938-3

Keywords

Navigation