Skip to main content

Advertisement

Log in

Thermo-mechanical Evaluation of Slurry-Sprayed Multi-layered Coatings

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) represent a relatively thin layer of ceramic with the favourable insulating properties, which are generally used to improve the temperature stability of the engineering component such as turbine blades. One of the prime prerequisites of TBCs is to determine the optimised coating configuration with the desired thermo-mechanical properties and enhanced service life. In a typical functionally graded coating structure, this could be achieved by having a trade-off between the thermal insulation and fatigue toughness offered by ceramic in top coat and metal towards the substrate, respectively. In this work, a computational method was used to analyse and optimise the parameters pertaining to thermo-mechanical evaluation of the slurry spray-coated (SST) mullite–nickel ASTM 1018 steel. The composite material properties have been predicted using the classical mean-field micromechanics model and rule of mixtures and the finite element simulation package ANSYS. Experimental validation has been performed to analyse the relative thermal and structural properties of the composite layers of the coatings using transient plane source (TSP)-based thermal constants analyser. The predicted and experimental results were further analysed and optimised for various process parameters using response surface optimisation and multi-objective genetic algorithm, which evaluated the optimum results considering the boundary conditions with a temperature reduction of nearly 306 °C. Further, the research results indicate that suitable thickness of the coating configuration of the slurry-sprayed mullite–nickel TBC system included coating thickness of 57.2 μm, 147.1 μm, and 143.9 μm for bond, intermediate, and top coats, respectively. The material properties were found dependent on the coating composition across the FG structure, and the predicted, computed, and experimental results were in reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ramaswamy, P.; Shankar, V.; Reghu, V.R.; Mathew, N.; Manoj Kumar, S.: A model to predict the influence of inconsistencies in thermal barrier coating (TBC) thicknesses in pistons of IC engines. Mater. Today Proc. 5, 12623–12631 (2018). https://doi.org/10.1016/j.matpr.2018.02.245

    Article  Google Scholar 

  2. Pasupuleti, K.T.; Dsouza, S.; Thejaraju, R.; Venkataraman, S.; Ramaswamy, P.; Murty, N.: Performance and steady state heat transfer analysis of functionally graded thermal barrier coatings systems. Mater. Today Proc. 5, 27936–27945 (2018). https://doi.org/10.1016/j.matpr.2018.10.033

    Article  Google Scholar 

  3. Nguyen, P.; Harding, S.; Ho, S.-Y.: Experimental studies on slurry based thermal barrier coatings. In: 5th Australasian Congress on Applied Mechanics (ACAM 2007), pp. 545–550. Engineers Australia (2007)

  4. Tejero-Martin, D.; Rad, M.R.; McDonald, A.; Hussain, T.: Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. J. Therm. Spray Technol. 28(4), 598–644 (2019). https://doi.org/10.1007/s11666-019-00857-1

    Article  Google Scholar 

  5. Zhou, D.; Guillon, O.; Vaßen, R.: Development of YSZ thermal barrier coatings using axial suspension plasma spraying. Coatings 7, 120 (2017). https://doi.org/10.3390/coatings7080120

    Article  Google Scholar 

  6. Verma, R.; Kant, S.; Suri, N.M.: Adhesion strength optimization of slurry sprayed mullite-based coating using Taguchi method. Proc. Inst. Mech. Eng. Part. E J. Process. Mech. Eng. 230, 87–96 (2014). https://doi.org/10.1177/0954408915595948

    Article  Google Scholar 

  7. Verma, R.; Suri, N.M.; Kant, S.: Parametric appraisal of slurry-sprayed mullite coatings for coating thickness. J. Therm. Spray Technol. (2016). https://doi.org/10.1007/s11666-016-0437-1

    Article  Google Scholar 

  8. Verma, R.; Suri, N.M.; Kant, S.: Effect of parameters on adhesion strength for slurry spray coating technique. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2016.1221090

    Article  Google Scholar 

  9. Kokini, K.; Takeuchi, Y.R.; Choules, B.D.: Surface thermal cracking of thermal barrier coatings owing to stress relaxation: zirconia vs mullite. Surf Coat. Technol. 82, 77–82 (1996). https://doi.org/10.1016/0257-8972(95)02647-9

    Article  Google Scholar 

  10. Torrecillas, R.; Calderón, J.M.; Moya, J.S.; Reece, M.J.; Davies, C.K.L.; Olagnon, C.; Fantozzi, G.: Suitability of mullite for high temperature applications. J. Eur. Ceram. Soc. 19, 2519–2527 (2002). https://doi.org/10.1016/s0955-2219(99)00116-8

    Article  Google Scholar 

  11. Gilbert, A.; Kokini, K.; Sankarasubramanian, S.: Thermal fracture of zirconia–mullite composite thermal barrier coatings under thermal shock: an experimental study. Surf Coat. Technol. 202, 2152–2161 (2007). https://doi.org/10.1016/j.surfcoat.2007.09.001

    Article  Google Scholar 

  12. Wang, L.; Zhong, X.H.; Zhao, Y.X.; Yang, J.S.; Tao, S.Y.; Zhang, W.; Wang, Y.; Sun, X.G.: Effect of interface on the thermal conductivity of thermal barrier coatings: a numerical simulation study. Int. J. Heat Mass Transf. 79, 954–967 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.088

    Article  Google Scholar 

  13. Wang, L.; Zhong, X.H.; Zhao, Y.X.; Tao, S.Y.; Zhang, W.; Wang, Y.; Sun, X.G.: Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method. J. Asian Ceram. Soc. 2, 102–116 (2014). https://doi.org/10.1016/j.jascer.2014.01.006

    Article  Google Scholar 

  14. Wakashima, K.; Tsukamoto, H.: Mean-field micromechanics model and its application to the analysis of thermomechanical behaviour of composite materials. Mater. Sci. Eng. A 146(1–2), 291–316 (1991). https://doi.org/10.1016/0921-5093(91)90284-T

    Article  Google Scholar 

  15. Tsukamoto, H.: Review micromechanical approach toward thermomechanical of metal matrix composites. ISIJ Int. 32, 883–892 (1992)

    Article  Google Scholar 

  16. Liu, G.R.: A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials. Compos. Struct. 40, 313–322 (1997). https://doi.org/10.1016/S0263-8223(98)00033-6

    Article  Google Scholar 

  17. He, Y.: Rapid thermal conductivity measurement with a hot disk sensor: part 2. Characterization of thermal greases. Thermochim. Acta 436, 130–134 (2005). https://doi.org/10.1016/j.tca.2005.07.003

    Article  Google Scholar 

  18. Adamczyk, W.P.; Kruczek, T.; Moskal, G.; Białecki, R.A.: Nondestructive technique of measuring heat conductivity of thermal barrier coatings. Int. J. Heat Mass Transf. 111, 442–450 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.126

    Article  Google Scholar 

  19. Białas, M.: Finite element analysis of stress distribution in thermal barrier coatings. Surf Coat. Technol. 202, 6002–6010 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.178

    Article  Google Scholar 

  20. Wang, L.; Fan, Q.; Liu, Y.; Li, G.; Zhang, H.; Wang, Q.; Wang, F.: Simulation of damage and failure processes of thermal barrier coatings subjected to a uniaxial tensile load. Mater. Des. 86, 89–97 (2015). https://doi.org/10.1016/j.matdes.2015.07.118

    Article  Google Scholar 

  21. Kyaw, S.; Jones, A.; Jepson, M.A.E.; Hyde, T.; Thomson, R.C.: Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings. Mater. Des. 125, 189–204 (2017). https://doi.org/10.1016/j.matdes.2017.03.067

    Article  Google Scholar 

  22. Wang, L.; Shao, F.; Zhong, X.H.; Ni, J.X.; Yang, K.; Tao, S.Y.; Wang, Y.: Tailoring of self-healing thermal barrier coatings via finite element method. Appl. Surf. Sci. 431, 60–74 (2018). https://doi.org/10.1016/j.apsusc.2017.06.025

    Article  Google Scholar 

  23. Verma, R.; Randhawa, J.S.; Kant, S.; Suri, N.M.: Characterization studies of slurry-sprayed mullite-nickel coatings on ASTM 1018 steel. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03753-6

    Article  Google Scholar 

  24. Qiao, J.H.; Bolot, R.; Liao, H.; Bertrand, P.; Coddet, C.: A 3D finite-difference model for the effective thermal conductivity of thermal barrier coatings produced by plasma spraying. Int. J. Therm. Sci. 65, 120–126 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.09.008

    Article  Google Scholar 

  25. Han, M.; Huang, J.; Chen, S.H.: A parametric study of the Double-Ceramic-Layer Thermal Barrier Coating Part II: optimization selection of mechanical parameters of the inside ceramic layer based on the effect on the stress distribution. Surf Coat. Technol. 238, 93–117 (2014). https://doi.org/10.1016/j.surfcoat.2013.10.053

    Article  Google Scholar 

  26. Han, M.; Zhou, G.; Huang, J.; Chen, S.H.: A parametric study of the double-ceramic-layer thermal barrier coatings part I: optimization design of the ceramic layer thickness ratio based on the finite element analysis of thermal insulation (take LZ 7 C 3/8YSZ/NiCoAlY DCL-TBC for an example). Surf Coat. Technol. 236, 500–509 (2013). https://doi.org/10.1016/j.surfcoat.2013.10.049

    Article  Google Scholar 

  27. Vaßen, R.; Kerkhoff, G.; Stöver, D.: Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings. Mater. Sci. Eng. A 303, 100–109 (2001). https://doi.org/10.1016/S0921-5093(00)01853-0

    Article  Google Scholar 

  28. Alexander, J.F.S.: CRC Materials Science and Engineering Databook. CRC Press, Boca Raton (2001). https://doi.org/10.1201/9781420038408

    Book  Google Scholar 

  29. Barton, A.F.M.: CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press, New York (2017). https://doi.org/10.1201/9781315140575

    Book  Google Scholar 

  30. He, Y.: Rapid thermal conductivity measurement with a hot disk sensor: part 1. Theoretical considerations. Thermochim. Acta 436, 122–129 (2005). https://doi.org/10.1016/j.tca.2005.06.026

    Article  Google Scholar 

  31. He, Y.: Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochim. Acta 419, 135–141 (2004). https://doi.org/10.1016/j.tca.2004.02.008

    Article  Google Scholar 

  32. Ajlan, S.A.: Measurements of thermal properties of insulation materials by using transient plane source technique. Appl. Therm. Eng. 26, 2184–2191 (2006). https://doi.org/10.1016/j.applthermaleng.2006.04.006

    Article  Google Scholar 

  33. Lim, L.Y.; Meguid, S.A.: Temperature dependent dynamic growth of thermally grown oxide in thermal barrier coatings. Mater. Des. 164, 107543 (2019). https://doi.org/10.1016/j.matdes.2018.107543

    Article  Google Scholar 

  34. Pabst, W.; Gregorová, E.; Uhlířová, T.; Musilová, A.: Elastic properties of mullite and mullite-containing ceramics part 1: theoretical aspects and review of monocrystal data. Ceram. Silik. 57, 265–274 (2013)

    Google Scholar 

  35. Ledbetter, H.; Kim, S.; Balzar, D.; Crudele, S.; Kriven, W.: Elastic properties of mullite. J. Am. Ceram. Soc. 81, 1025–1028 (2005). https://doi.org/10.1111/j.1151-2916.1998.tb02441.x

    Article  Google Scholar 

  36. Nikolaev, V.P.; Myshenkova, E.V.; Pichugin, V.S.; Sinitsyn, E.N.; Khoroshev, A.N.: Temperature effect on the mechanical properties of composite materials. Inorg. Mater. (2014). https://doi.org/10.1134/S002016851415014X

    Article  Google Scholar 

  37. Ramalho, A.; Braga De Carvalho, M.D.; Antunes, P.V.: Effects of temperature on mechanical and tribological properties of dental restorative composite materials. Tribol. Int. 63, 186–195 (2013)

    Article  Google Scholar 

  38. Sadowski, T.; Golewski, P.: Loadings in Thermal Barrier Coatings of Jet Engine Turbine Blades. An Experimental Research and Numerical Modeling. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0919-8

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseem, M., Verma, R. & Kango, S. Thermo-mechanical Evaluation of Slurry-Sprayed Multi-layered Coatings. Arab J Sci Eng 45, 9449–9470 (2020). https://doi.org/10.1007/s13369-020-04793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04793-z

Keywords

Navigation