Skip to main content
Log in

Parametric Appraisal of Slurry-Sprayed Mullite Coatings for Coating Thickness

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

The slurry spray technique (SST) has been employed to deposit mullite-based coatings on ASTM 1018 low-carbon steel substrate for environmental barrier coating applications. A Taguchi L18 orthogonal array is adopted for optimization of the identified process variables and material parameters, namely stamping pressure, fly-ash content, and sintering additive, time, and temperature. The measured thickness of the produced coatings was chosen as the response characteristic for the present study. The optimum values of the process variables were predicted by employing analysis of variance based on raw data and the signal-to-noise (S/N) ratio. Based on analysis of the experimental results, the effect of each parameter level on the coating thickness is discussed. It is observed that the sintering temperature had a strong influence on the maximum coating thickness of the slurry-sprayed coating. The as-sprayed coatings fabricated using SST demonstrated splat morphology with continuous interface, suggesting good adherence to the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.V. Cojocaru, Y. Wang, C. Moreau, R.S. Lima, J. Mesquita-Guimaraes, E. Garcia, P. Miranzo, and M.I. Osendi, Mechanical Behavior of Air Plasma-Sprayed YSZ Functionally Graded Mullite Coatings Investigated via Instrumented Indentation, J. Therm. Spray Technol., 2011, 20(1-2), p 100-107

    Article  Google Scholar 

  2. P. Nguyen, “Slurry Sprayed Thermal Barrier Coatings for Aerospace Applications,” Ph.D. thesis, The University of Adelaide, 2010

  3. X.C. Zhang, B.S. Xu, H.D. Wang, Y. Jiang, and Y.X. Wu, Modeling of Thermal Residual Stresses in Multilayer Coatings with Graded Properties and Compositions, Thin Solid Films, 2006, 497(1), p 223-231

    Article  Google Scholar 

  4. M.A. Farrokhzad and T.I. Khan, High Temperature Oxidation of Nickel-Based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles, Oxid. Met., 2014, 81(1-2), p 267-285

    Article  Google Scholar 

  5. M.A. Farrokhzad and T.I. Khan, High Temperature Oxidation Behaviour of Nickel Based Nanostructured Composite Coatings, Key Eng. Mater., 2012, 510, p 32-42

    Article  Google Scholar 

  6. J. Tuominen, P. Vuoristo, T. Mantyla, S. Ahmaniemi, J. Vihinen, and P.H. Andersson, Corrosion Behavior of HVOF-Sprayed and Nd-YAG Laser-Remelted High-Chromium, Nickel-Chromium Coatings, J. Therm. Spray Technol., 2002, 11(2), p 233-243

    Article  Google Scholar 

  7. M. Srivastava, G.K. Suprita, and V.K. William Grips, Multifunctional Electrodeposited Ni-Mullite Composite Coating, in National Symposium on Electrochemical Science & Technology (NSEST 2013), Jul 2013, IISc, Bangalore

  8. E. Garcia, J. Mesquita-Guimarães, P. Miranzo, M.I. Osendi, Y. Wang, R.S. Lima, and C. Moreau, Mullite and Mullite/ZrO2-7wt.% Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 286-293

    Article  Google Scholar 

  9. R. Verma, S. Kant, and N.M. Suri, Adhesion Strength Optimization of Slurry Sprayed Mullite-Based Coating Using Taguchi Method, Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., 2015, 230(2), p 87-96. doi:10.1177/0954408915595948

    Article  Google Scholar 

  10. S.C. White and E.D. Case, Characterization of Fly Ash from Coal-Fired Power Plants, J. Mater. Sci., 1990, 25(12), p 5215-5219. doi:10.1007/BF00580153

    Article  Google Scholar 

  11. N. Tenzuka, I.M. Low, I.J. Davies, I.D. Alecu, R.J. Stead, E.G. Mehrtens, and B.A. Latella, Effect of Fluoride and Oxide Additives on the Phase Transformations in Alumina/Clay Ceramics, J. Aust. Ceram. Soc., 2009, 45(1), p 19-27

    Google Scholar 

  12. http://www.azom.com/article.aspx?ArticleID=6115, 2013. Accessed 25 Aug 2013

  13. R. Greenwood and K. Kendall, Selection of Suitable Dispersants for Aqueous Suspensions of Zirconia and Titania Powders using Acoustophoresis, J. Eur. Ceram. Soc., 1999, 19, p 479-488

    Article  Google Scholar 

  14. S. Baklouti, T. Chartier, and J.F. Baumard, Binder Distribution in Spray Dried Alumina Agglomerates, J. Eur. Ceram. Soc., 1998, 18, p 2117-2121

    Article  Google Scholar 

  15. P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, and M.A. Einarsrud, Densification and Properties of Zirconia Prepared by Three Different Sintering Techniques, Ceram. Int., 2007, 33(8), p 1603-1610

    Article  Google Scholar 

  16. I. Konyashin, A Technique for Fabrication of Coated TiCN-Based Cermets with Functionally Graded Structure, Int. J. Refract Metal Hard Mater., 2001, 19(4-6), p 523-526

    Article  Google Scholar 

  17. P.J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1996, p 1-3

    Google Scholar 

  18. T.B. Barker, Quality Engineering Design: Taguchi Philosophy, Qual. Prog., 1986, 19(12), p 33-42

    Google Scholar 

  19. K. Rajeswari, U.S. Hareesh, R. Subasri, D. Chakravarty, and R. Johnson, Comparative Evaluation of Spark Plasma (SPS), Microwave (MWS), Two Stage Sintering (TSS) and Conventional Sintering (CRH) on the Densification and Micro Structural Evolution of Fully Stabilized Zirconia Ceramics, Sci. Sinter., 2010, 42, p 259-267

    Article  Google Scholar 

  20. P. Nguyen, S. Harding, and S.Y. Ho, Experimental Studies on Slurry Based Thermal Barrier Coatings, 5th Australasian Congress on Applied Mechanics (Brisbane, Australia), 10-12 Dec, 2007, p 545-550

  21. Y. Dong, S. Hampshire, J.E. Zhou, B. Lin, Z. Ji, X. Zhang, and G. Meng, Recycling of Fly Ash for Preparing Porous Mullite Membrane Supports with Titania Addition, J. Hazard. Mater., 2010, 180, p 1-3

    Article  Google Scholar 

  22. E. Withey, C. Petorak, R. Trice, G. Dickinson, and T. Taylor, Design of 7 wt.% Y2O3-ZrO2/Mullite Plasma-Sprayed Composite Coatings for Increased Creep Resistance, J. Eur. Ceram. Soc., 2007, 27(16), p 4675-4683

    Article  Google Scholar 

  23. B. Viswanath and S. Vijayarangan, Characterization Studies of Mullite Coatings on Cast Aluminum, J. Therm. Spray Technol., 2012, 21(2), p 325-334. doi:10.1007/s11666-011-9708-z

    Article  Google Scholar 

  24. J.O. Berghaus and B.R. Marple, High-Velocity Oxy-Fuel (HVOF) Suspension Spraying of Mullite Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 671-678

    Article  Google Scholar 

  25. P. Ramaswamy, S. Seetharamu, K.J. Rao, and K.B.R. Varma, Thermal Shock Characteristics of Plasma Sprayed Mullite Coatings, J. Therm. Spray Technol., 1998, 7(4), p 497-504

    Article  Google Scholar 

  26. R.K. Roy, A Primer on Taguchi Method, Van Nostrand Reinhold, New York, 1990, p 174

    Google Scholar 

  27. H. Masoumi, S.M. Safavi, M. Salehi, and S.M. Nahvi, Effect of Grinding on the Residual Stress and Adhesion Strength of HVOF Thermally Sprayed WC-10Co-4Cr Coating, Mater. Manuf. Process., 2014, 29(9), p 1139-1151. doi:10.1080/10426914.2014.930893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Suri, N. & Kant, S. Parametric Appraisal of Slurry-Sprayed Mullite Coatings for Coating Thickness. J Therm Spray Tech 25, 1289–1301 (2016). https://doi.org/10.1007/s11666-016-0437-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0437-1

Keywords

Navigation