Skip to main content

Advertisement

Log in

HIV and Alzheimer’s disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

In patients infected with the human immunodeficiency virus (HIV), the HIV-Tat protein may be continually produced despite adequate antiretroviral therapy. As the HIV-infected population is aging, it is becoming increasingly important to understand how HIV-Tat may interact with proteins such as amyloid β and Tau which accumulate in the aging brain and eventually result in Alzheimer’s disease. In this review, we examine the in vivo data from HIV-infected patients and animal models and the in vitro experiments that show how protein complexes between HIV-Tat and amyloid β occur through novel protein-protein interactions and how HIV-Tat may influence the pathways for amyloid β production, degradation, phagocytosis, and transport. HIV-Tat may also induce Tau phosphorylation through a cascade of cellular processes that lead to the formation of neurofibrillary tangles, another hallmark of Alzheimer’s disease. We also identify gaps in knowledge and future directions for research. Available evidence suggests that HIV-Tat may accelerate Alzheimer-like pathology in patients with HIV infection which cannot be impacted by current antiretroviral therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral Research Center (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J NeuroImmune Pharmacol 4(2):190–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-beta (1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2009) Attenuated neurotoxicity of the transactivation-defective HIV-1 Tat protein in hippocampal cell cultures. Exp Neurol 219(2):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475(3):174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • András IE, Toborek M (2011) HIV-1-induced alterations of claudin-5 expression at the blood-brain barrier level. Methods Mol Biol 762:355–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • András IE, Toborek M (2013) Amyloid beta accumulation in HIV-1-infected brain: the role of the blood brain barrier. IUBMB Life 65(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • András IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74(2):255–265

    Article  PubMed  CAS  Google Scholar 

  • András IE, Pu H, Tian J, Deli MA, András IE, Pu H, Tian J, Deli MA, Nath A, Hennig B, Toborek M (2005) Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab 25(9):1159–1170

    Article  PubMed  CAS  Google Scholar 

  • András IE, Rha G, Huang W, Eum S, Couraud PO, Romero IA, Hennig B, Toborek M (2008) Simvastatin protects against amyloid beta and HIV-1 Tat-induced promoter activities of inflammatory genes in brain endothelial cells. Mol Pharmacol 73(5):1424–1433

    Article  PubMed  CAS  Google Scholar 

  • András IE, Eum SY, Huang W, Zhong Y, Hennig B, Toborek M (2010) HIV-1-induced amyloid beta accumulation in brain endothelial cells is attenuated by simvastatin. Mol Cell Neurosci 43(2):232–243

    Article  PubMed  CAS  Google Scholar 

  • Avraham HK, Jiang S, Lee TH, Prakash O, Avraham S (2004) HIV-1 Tat-mediated effects on focal adhesion assembly and permeability in brain microvascular endothelial cells. J Immunol 173:6228–6233

    Article  CAS  PubMed  Google Scholar 

  • Bagashev A, Sawaya BE (2013) Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 10:358–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ball KA, Wemmer DE, Head-Gordon T (2014) Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J Phys Chem B 118:6405–6416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer TA, Cappai R, Masters CL, Beyreuther K, Multhaup G (1999) It all sticks together- -the APP-related family of proteins and Alzheimer’s disease. Mol Psychiatry 4(6):524–528

    Article  CAS  PubMed  Google Scholar 

  • Becker JT, Lopez OL, Dew MA, Aizenstein HJ (2004) Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS 18:S11–S18

    Article  PubMed  Google Scholar 

  • Ben-Dov N, Korenstein R (2015) The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis. Biochim Biophys Acta 1848(3):869–877

    Article  CAS  PubMed  Google Scholar 

  • Bright NA, Davis LJ, Luzio JP (2016) Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr Biol 26(17):2233–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57(4):559–577

    Article  CAS  PubMed  Google Scholar 

  • Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, Zhang K, Liu YH, Zeng F, Liu JH, Sun HL, Zhuang ZQ, Chen SH, Yao XQ, Giunta B, Shan YC, Tan J, Chen XW, Dong ZF, Zhou HD, Zhou XF, Song W, Wang YJ (2018) Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol Psychiatry 9:1–9

    CAS  Google Scholar 

  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157(1):277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Choi JJ, Choi YJ, Hennig B, Toborek M (2012) HIV-1 Tat-induced cerebrovascular toxicity is enhanced in mice with amyloid deposits. Neurobiol Aging 33(8):1579–1590

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34(10):2370–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Huang W, Jiang W, Wu X, Ye B, Zhou X (2016) HIV-1 Tat regulates occludin and Aβ transfer receptor expression in brain endothelial cells via Rho/ROCK signaling pathway. Oxidative Med Cell Longev 2016:4196572

    Google Scholar 

  • Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96(7):3590–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B, Wall J, Linse S, Griffin RG (2016) Atomic resolution structure of monomorphic Aβ 42 amyloid fibrils. J Am Chem Soc 138(30):9663–9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daily A, Nath A, Hersh L (2006) Tat peptides inhibit neprilysin. J Neuro-Oncol 12:153–160

    CAS  Google Scholar 

  • de Almeida SM, Ribeiro CE, Rotta I, Piovesan M, Tang B, Vaida F, Raboni SM, Letendre S, Potter M, Batistela Fernandes MS, Ellis RJ, HIV Neurobehavioral Research Center (HNRC) Group (2018) Biomarkers of neuronal injury and amyloid metabolism in the cerebrospinal fluid of patients infected with HIV-1 subtypes B and C. J Neuro-Oncol 24(1):28–40

    Google Scholar 

  • de Groot NS, Castillo V, Graña-Montes R, Ventura S (2012) AGGRESCAN: method, application, and perspectives for drug design. In: Baron R (ed) Computational drug discovery and design. Methods in molecular biology (methods and protocols), vol 819. Springer, New York

    Google Scholar 

  • Deane R, Wu Z, Zlokovic BV (2004) RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 35(11 Suppl 1):2628–2631

    Article  CAS  PubMed  Google Scholar 

  • Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13:355–363

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Aussio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  CAS  PubMed  Google Scholar 

  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I, Mallory M, Masliah E (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol 9:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8(2):284–294

    Article  CAS  PubMed  Google Scholar 

  • Ferrell D, Giunta B (2014) The impact of HIV-1 on neurogenesis: implications for HAND. Cell Mol Life Sci 71(22):4387–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E (2015a) Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 13(1):43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields J, Dumaop W, Eleuteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, He JJ, Masliah E (2015b) HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35(5):1921–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fittipaldi A, Ferrari A, Zoppé M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278(36):34141–34149

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Fraser PE, Nguyen JT, Inouye H, Surewicz WK, Selkoe DJ, Podlisny MB, Kirschner DA (1992) Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid beta-protein. Biochemistry 31(44):10716–10723

    Article  CAS  PubMed  Google Scholar 

  • Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting binding regions within disordered proteins. Genome Inform 10:41–50

    CAS  Google Scholar 

  • Giunta B, Zhou Y, Hou H, Rrapo E, Fernandez F et al (2008) HIV-1 Tat inhibits microglial phagocytosis of Abeta peptide. Int J Clin Exp Pathol 1:260–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giunta B, Hou H, Zhu Y, Rrapo E, Tian J et al (2009) HIV-1 Tat contributes to Alzheimer’s disease-like pathology in PSAPP mice. Int J Clin Exp Pathol 2:433–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giunta B, Ehrhart J, Obregon DF, Lam L, Le L, Jin J, Fernandez F, Tan J, Shytle RD (2011) Antiretroviral medications disrupt microglial phagocytosis of β-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain 4(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of β-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–411

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Kameoka M, Wei X, Roques B, Gotte M, Liang C, Wainberg MA (2003) Suppression of an intrinsic strand transfer activity of HIV-1 Tat protein by its second-exon sequences. Virology 307:154–163

    Article  CAS  PubMed  Google Scholar 

  • Halverson K, Fraser PE, Kirschner DA, Lansbury PT Jr (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic beta-protein fragments. Biochemistry 29(11):2639–2644

    Article  CAS  PubMed  Google Scholar 

  • Hategan A, Bianchet MA, Steiner J, Karnaukhova E, Masliah E, Fields A, Lee MH, Dickens AM, Haughey N, Dimitriadis EK, Nath A (2017) HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 24(4):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Pu H, Tian J, Andras IE, Lee YW, Hennig B, Toborek M (2005) HIV-Tat protein induces P-glycoprotein expression in brain microvascular endothelial cells. J Neurochem 93(5):1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Pu H, Andras IE, Eum SY, Yamauchi A, Hennig B, Toborek M (2006) HIVTAT protein upregulates expression of multidrug resistance protein 1 in the blood-brain barrier. J Cereb Blood Flow Metab 26(8):1052–1065

    Article  CAS  PubMed  Google Scholar 

  • Hayman M, Arbuthnott G, Harkiss G, Brace H, Filippi P, Philippon V, Thomson D, Vigne R, Wright A (1993) Neurotoxicity of peptide analogues of the transactivating protein Tat from Maedi-Visna virus and human immunodeficiency virus. Neuroscience 53:1–6

    Article  CAS  PubMed  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group, HNRC Group (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol 17(1):3–16

    CAS  Google Scholar 

  • Hellmuth J, Milanini B, Masliah E, Tartaglia MC, Dunlop MB, Moore DJ, Javandel S, DeVaughn S, Valcour V (2018) A neuropathologic diagnosis of Alzheimer’s disease in an older adult with HIV-associated neurocognitive disorder. Neurocase 4:213–219

    Article  Google Scholar 

  • Huang W, Chen L, Zhang B, Park M, Toborek M (2014) PPAR agonist-mediated protection against HIV Tat-induced cerebrovascular toxicity is enhanced in MMP-9-deficient mice. J Cereb Blood Flow Metab 34(4):646–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4(4):243–252

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292(5521):1550–1552

    Article  CAS  PubMed  Google Scholar 

  • Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA, Lynch JL, Robinson SM, Niehoff ML, Johnson SN, Kumar VB, Banks WA (2009) Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 17(3):553–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription. Tat J Biol Chem 274:28837–28840

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Huang W, Chen Y, Zou M, Peng D, Chen D (2017) HIV-1 Transactivator protein induces ZO-1 and neprilysin dysfunction in brain endothelial cells via the Ras signaling pathway. Oxidative Med Cell Longev 2017:3160360

    Google Scholar 

  • Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, Nath A (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A 10(33):13588–13593

    Article  Google Scholar 

  • Kadri F, Pacifici M, Wilk A, Parker-Struckhoff A, Del Valle L, Hauser KF, Knapp PE, Parsons C, Jeansonne D, Lassak A, Peruzzi F (2015) HIV-1-Tat protein inhibits SC35-mediated Tau exon 10 inclusion through up-regulation of DYRK1A kinase. J Biol Chem 290(52):30931–30946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  • Khan MB, Lang MJ, Huang MB, Raymond A, Bond VC, Shiramizu B, Powell MD (2016) Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ_(1-42) secretion in SH-SY5Y neural cells. J Neuro-Oncol 2:179–190

    Google Scholar 

  • Kim J, Yoon JH, Kim YS (2013) HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8(11):e77972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kodali R, Williams AD, Chemuru S, Wetzel R (2010) Abeta(1-40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J Mol Biol 401:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87:1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lansbury PT Jr (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A 96(7):3342–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Retamal C, Cuitino L, Caruano-Yzermans A, Shin JE, van Kerkhof P, Marzolo MP, Bu G (2008) Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 283:11501–11508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Li G, Steiner J, Nath A (2009) Role of tat protein in HIV neuropathogenesis. Neurotox Res 16(3):205–220

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hou H, Mori T, Sawmiller D, Smith A, Tian J, Wang Y, Giunta B, Sanberg PR, Zhang S, Tan J (2015) Swedish mutant APP-based BACE1 binding site peptide reduces APP β-cleavage and cerebral Aβ levels in Alzheimer’s mice. Sci Rep 5:11322

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6(12):1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154(6):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71(3):2495–2499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macchi S, Nifosì R, Signore G, Di Pietro S, Boccardi C, D'Autilia F, Beltram F, Cardarelli F (2017) Self-aggregation propensity of the Tat peptide revealed by UV-Vis, NMR and MD analyses. Phys Chem Chem Phys 19(35):23910–23914

    Article  CAS  PubMed  Google Scholar 

  • Maragos WF, Tillman P, Jones M, Bruce-Keller AJ, Roth S, Bell JE, Nath A (2003) Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat. Neuroscience 117:43–53

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Bonet M, Muñoz-Fernández MÁ, Álvarez S (2018) HIV-1 increases extracellular amyloid-beta levels through neprilysin regulation in primary cultures of human astrocytes. J Cell Physiol. https://doi.org/10.1002/jcp.26462

  • Masliah E, Westland CE, Rockenstein EM, Abraham CR, Mallory M, Veinberg I, Sheldon E, Mucke L (1997) Amyloid precursor proteins protect neurons of transgenic mice against acute and chronic excitotoxic injuries in vivo. Neuroscience 78(1):135–146

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ Suppl 1:893–904

    Article  CAS  Google Scholar 

  • Mishra A, Gordon VD, Yang L, Coridan R, Wong GC (2008) HIV TAT forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. Angew Chem Int Ed Engl 47(16):2986–2989

    Article  CAS  PubMed  Google Scholar 

  • Moores B, Drolle E, Attwood SJ, Simons J, Leonenko Z (2011) Effect of surfaces on amyloid fibril formation. PLoS One 6:e25954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgello S, Jacobs M, Murray J, Byrd D, Neibart E, Mintz L, Meloni G, Chon C, Crary J (2018) Alzheimer’s disease neuropathology may not predict functional impairment in HIV: a report of two individuals. J Neuro-Oncol 5:629–637

    Google Scholar 

  • Moss S, Subramanian V, Acharya KR (2018) High resolution crystal structure of substrate-free human neprilysin. J Struct Biol 204(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Hersh LB (2005) Tat and amyloid: multiple interactions. AIDS 19(2):203–204

    Article  PubMed  Google Scholar 

  • Nath A, Steiner J (2014) Synaptodendritic injury with HIV-Tat protein: what is the therapeutic target? Exp Neurol 251:112–114

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3):1475–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD (2000) Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 47(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci U S A 101(46):16180–16185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paravastu AK, Leapman RD, Yau WM, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci U S A 105(1834):9–18354

    Google Scholar 

  • Parthsarathy V, McClean PL, Hölscher C, Taylor M, Tinker C, Jones G, Kolosov O, Salvati E, Gregori M, Masserini M, Allsop D (2013) A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1∆E9 mouse model of Alzheimer’s disease. PLoS One 8(1):e54769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinforma Comput Biol 1:35–60

    Article  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265

    Article  CAS  PubMed  Google Scholar 

  • Potocky TB, Menon AK, Gellman SH (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J Biol Chem 278(50):50188–50194

    Article  CAS  PubMed  Google Scholar 

  • Pu H, Tian J, Andras IE, Hayashi K, Flora G, Hennig B, Toborek M (2005) HIV-1 Tat protein-induced alterations of ZO-1 expression are mediated by redox-regulated ERK 1/2 activation. J Cereb Blood Flow Metab 25(10):1325–1335

    Article  CAS  PubMed  Google Scholar 

  • Pulliam L (2009) HIV regulation of amyloid beta production. J Neuroimmune Pharmacol 4(2):213–217

    Article  PubMed  Google Scholar 

  • Pulliam L, Sun B, Rempel H, Martinez PM, Hoekman JD, Rao RJ, Frey WH 2nd, Hanson LR (2007) Intranasal tat alters gene expression in the mouse brain. J NeuroImmune Pharmacol 2(1):87–92

    Article  PubMed  Google Scholar 

  • Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neuro-Oncol. https://doi.org/10.1007/s13365-018-0695-4

  • Rahimian P, He JJ (2016) Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein. J Neuro-Oncol 6:774–788

    Google Scholar 

  • Rambaran RN, Serpell LC (2008) Amyloid fibrils: abnormal protein assembly. Prion 2(3):112–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Rempel HC, Pulliam L (2005) HIV-1Tat inhibits neprilysin and elevates amyloid beta. AIDS 19(2):127–135

    Article  CAS  PubMed  Google Scholar 

  • Rockenstein E, Hansen LA, Mallory M, Trojanowski JQ, Galasko D, Masliah E (2001) Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res 914(1–2):48–56

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39(5–6):333–340

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40(2):260–269

    Article  PubMed  Google Scholar 

  • Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502(1):16–30

    Article  CAS  PubMed  Google Scholar 

  • Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, Kiryu-Seo S, Kiyama H, Iwata H, Tomita T, Iwatsubo T, Saido TC (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276(24):21895–21901

    Article  CAS  PubMed  Google Scholar 

  • Shojania S, O’Neil JD (2006) HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy. J Biol Chem 281:8347–8356

    Article  CAS  PubMed  Google Scholar 

  • Shojania S, O’Neil JD (2010) Intrinsic disorder and function of the HIV-1 Tat protein. Protein Pept Lett 17:999–1011

    Article  CAS  PubMed  Google Scholar 

  • Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that beta –amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248:492–495

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Pentlicky S, Klase Z, Singh M, Neuveut C, Lu CY, Reitz MS Jr, Yarchoan R, Marx PA, Jeang KT (2003) An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem 278:44816–44825

    Article  CAS  PubMed  Google Scholar 

  • Soliman ML, Geiger JD, Chen X (2017) Caffeine blocks HIV-1 Tat-induced amyloid beta production and Tau phosphorylation. J NeuroImmune Pharmacol 12(1):163–170

    Article  PubMed  Google Scholar 

  • Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH (2010) Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465(7299):747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcour VG, Shikuma CM, Watters MR, Sacktor NC (2004) Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18:S79–S86

    Article  PubMed  Google Scholar 

  • Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15(5):2347–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wälti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Böckmann A, Güntert P, Meier BH, Riek R (2016) Atomic-resolution structure of a disease-relevant Aβ (1-42) amyloid fibril. Proc Natl Acad Sci U S A 113(34):E4976–E4984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375(6531):497–500

    Article  CAS  PubMed  Google Scholar 

  • Yezid H, Konate K, Debaisieux S, Bonhoure A, Beaumelle B (2009) Mechanism for HIV- 1 Tat insertion into the endosome membrane. J Biol Chem 284(34):22736–22746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitler M, Steringer JP, Müller HM, Mayer MP, Nickel W (2015) HIV-Tat protein forms phosphoinositide-dependent membrane pores implicated in unconventional protein secretion. J Biol Chem 290(36):21976–21984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Paganini L, Mucke L, Gordon M, Refolo L, Carman M, Sinha S, Oltersdorf T, Lieberburg I, McConlogue L (1996) Beta-secretase processing of the beta-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J Biol Chem 271(49):31407–31411

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avindra Nath.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hategan, A., Masliah, E. & Nath, A. HIV and Alzheimer’s disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J. Neurovirol. 25, 648–660 (2019). https://doi.org/10.1007/s13365-019-00736-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-019-00736-z

Keywords

Navigation