Skip to main content
Log in

Molecular characterization of a wheat -Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust

  • Plant Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Stripe rust (caused by Puccinia striiformis) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum has provided novel rust resistance genes to protect wheat from this fungal disease. Wheat – Th. ponticum partial amphiploid line 7430 and a substitution line X005 developed from crosses between wheat and 7430 were resistant to stripe rust isolates from China. Genomic in situ hybridization (GISH) analysis using Pseudoroegneria spicata genomic DNA as a probe demonstrated that the partial amphiploid line 7430 contained ten Js and six J genome chromosomes, and line X005 had a pair of Js-chromosomes. Giemsa-C banding further revealed that both lines 7430 and X005 were absent of wheat chromosomes 6B. The EST based PCR confirmed that the introduced Js chromosomes belonging to linkage group 6, indicating that line X005 was a 6Js/6B substitution line. Both resistance observation and sequence characterized amplified region (SCAR) markers displayed that the introduced chromosomes 6Js were responsible for the stripe rust resistances. Therefore, lines 7430 and X005 can be used as a donor in wheat breeding for stripe rust resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cai XW, Jones SS, Murray TD (1998) Molecular cytogenetic characterization of Thinopyrum and wheat-Thinopyrum translocated chromosomes in a wheat-Thinopyrum amphiploid. Chromosome Res 6:183–189

    Article  PubMed  CAS  Google Scholar 

  • Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe - A landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Conner RL, Ahmad F, Laroche A, Fedak G, Thomas JB (1998a) Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum intermedium and T. aestivum × Thinopyrum ponticum as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet 97:1–8

    Article  CAS  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998b) Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 41:580–586

    PubMed  CAS  Google Scholar 

  • Comeau A, Makouk KM, Ahmed F, St-Pierre CA (1994) Bread wheat × Agrotricum crosses as a source of immunity and resistance to the PAV strain of barley yellow dwarf luteovirus. Agronomic 2:153–160

    Article  Google Scholar 

  • Conner RL, Whelan EDP, MacDonald MD (1989) Identification of sources of resistance to common root rot in wheat -alien amphiploid and chromosome substitution lines. Crop Sci 29:916–919

    Article  Google Scholar 

  • Fedak G, Chen Q, Conner RL, Laroche A, Petroski R, Armstrong KW (2000) Characterization of wheat–Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome 43:712–719

    PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404

    Article  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Han F, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang X (2009) Thinopyrum ponticum and the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36:557–565

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Rong S, Chen SY, Zhong GC, Mu SM (1985) Wheat wide hybridization. Chinese Scientific Press, China, pp 52–58

    Google Scholar 

  • Li HJ, Chen Q, Conner RL, Guo BH, Zhang Y, Graf RJ, Laroche A, Jia X, Liu G, Chu CC (2003) Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome 46:906–913

    Article  PubMed  CAS  Google Scholar 

  • Li HJ, Arterburn M, Jones SS, Murry TD (2004a) A new source of resistance to Tapesia yallundae associated with a homoleologous group 4 chromosome in Thinopyrum ponticum. Phytopathology 94:932–937

    Article  PubMed  CAS  Google Scholar 

  • Li HJ, Conner RL, Chen Q, Li HY, Laroche A, Graf RJ, Kuzyk AD (2004b) The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome 47:215–223

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Yang ZJ, Li GR, Zeng ZX, Zhang Y, Zhou JP, Liu ZH, Ren ZL (2008) Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica 159:249–258

    Article  CAS  Google Scholar 

  • Liu C, Yang ZJ, Jia JQ, Li GR, Zhou JP, Ren ZL (2009) Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun 37:363–372

    Article  CAS  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83:87–93

    Article  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of Gene Symbols for Wheat. Proc 11th Int Wheat Genet Symp. University of Sydney Press, Australia

    Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Oliver RE, Cai X, Xu SS, Chen X, Stack RW (2005) Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat. Crop Sci 45:1353–1360

    Article  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Sepsi A, Molnar I, Szalay D, Molnar-Lang M (2008) Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834

    Article  PubMed  CAS  Google Scholar 

  • Szalay D (1979) Use of interspecific and intergenomic hybrids in wheat breeding. In: Bálint A (ed) The present and future of wheat. Mezögazdasági Kiadó, Budapest, pp 61–66

    Google Scholar 

  • Van Deynze AE, Sorrells ME, Park WD, Ayres NM, Fu H, Cartinhour SW, Paul E, McCouch SR (1998) Anchor probes for comparative mapping in grass genera. Theor Appl Genet 97:356–369

    Article  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  PubMed  CAS  Google Scholar 

  • Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL (2006) Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica 149:11–17

    Article  CAS  Google Scholar 

  • Yin XG, Shang XW, Pang BS, Song JR, Cao SQ, Li JC, Zhang XY (2006) Molecular mapping of two novel stripe rust resistance genes YrTp1 and YrTp2 in A-3 derived from Triticum aestivum-Thinopyrum ponticum. Sci Agricultura Sin 39:10–17

    CAS  Google Scholar 

  • Zhang XY, Dong YS, Wang RRC (1996) Characterization of genomes and chromosomes in partial amphiploids of the hybrids Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome 39:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Friebe B, Gill B, Park R (2007) Cytogenetics in the age of molecular genetics. Aus J Agric Res 58:498–506

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the National Natural Science Foundation of China (No. 30170502, 30871518), Open Foundation of state Key lab of CAS (2010-PCCE-KF-03), and Young Scholars Foundation from the Science and Technology Committee of Sichuan (2008-31-371) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, LJ., Li, GR., Zeng, ZX. et al. Molecular characterization of a wheat -Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. J Appl Genetics 52, 279–285 (2011). https://doi.org/10.1007/s13353-011-0038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-011-0038-0

Keywords

Navigation