Skip to main content
Log in

Effects of local tissue conductivity on spherical and realistic head models

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this study, we consider different conductivity values based on tissue location in a human head model. We implement local conductivity (LC) to compute head surface potentials in three-, four-layered spherical and realistic head models using finite element method (FEM). Implementing LC for all head models, we obtain significant scalp potential variations in the term of relative difference measurement (RDM) and magnification (MAG) values with a maximum of 2.03 ± 1.81 and 8.27 ± 6.36, respectively. We also investigate the effects of conductivity variations (CVs) of head tissue layer on scalp potentials and find a maximum of 2.15 ± 1.93 RDM and 8.57 ± 6.61 MAG values. Our study concludes that it is important to assign LC to each tissue and it is also important to assign appropriate conductivity value in the construction of a head model for achieving accurate scalp potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nicolas C, Xavier F, Florent A, Pierre C, Bernard R (2008) Critical imaging on head template: a simulation study using resistor mesh model (RMM). Brain Topogr 21:52–60

    Article  Google Scholar 

  2. Bruno P, Vatta F, Inchingolo P (2001) Interaction between noise and lesion modeling errors on EEG source localization accuracy. In: Proceedings of the 23rd annual EMBS international conference, pp 917–920

  3. Awada KA, Jackson DR, Baumann SB, Williams JT, Wilton DR, Fink PW, Prasky BR (1998) Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans Biomed Eng 45(9):1135–1145

    Article  PubMed  CAS  Google Scholar 

  4. Roche-Labarbe N, Aarabi A, Kongolo G, Gondry-Jouet C, Dumpelmann M, Grebe R, Wallois F (2008) High-resolution electroencephalography and source localization in neonates. Hum Brain Mapp 29:167–176

    Article  PubMed  Google Scholar 

  5. von Ellenrieder N, Muravchik CH, Nehorai A (2006) Effects of geometric head model perturbations on the EEG forward and inverse problems. IEEE Trans Biomed Eng 53(3):421–429

    Article  Google Scholar 

  6. Bart Vanrumste B, Van Hoey G, Van de Walle R, DHave M, Lemahieu I, Boon P (2000) Dipole location errors in electroencephalogram source analysis due to volume conductor model errors. Med Biol Eng Comput 38:528–534

    Article  Google Scholar 

  7. Schimpf PH, Ramon C, Haueisen J (2002) Dipole models for the EEG and MEG. IEEE Trans Biomed Eng 49(5):409–418

    Article  PubMed  Google Scholar 

  8. Makis N, Angelone L, Tulloch S, Sorg S, Kaiser J, Kennedy D, Bonmassar G (2008) MRI-based anatomical model of the human head for specific absorbtion rate mapping. Med Biol Eng Comput 46:1239–1251

    Article  Google Scholar 

  9. Sadleir RJ, Argibay A (2007) Modeling skull electric properties. Ann Biomed Eng 35:1699–1712

    Article  PubMed  CAS  Google Scholar 

  10. Marin G, Guerin C, Baillet S, Garnero L, Meunier G (1998) Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Brain Mapp 6:250–269

    Article  CAS  Google Scholar 

  11. Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6:99–109

    Article  PubMed  CAS  Google Scholar 

  12. Ramon C, Haueisen J, Schimpf PH (2006) Influences of head models on neuromagnetic fields and inverse source localizations. BioMed Eng Online 5:55

    Article  PubMed  Google Scholar 

  13. Ramon C, Schimpf PH, Haueisen J (2006) Influences of head models on EEG simulations and inverse source localizations. BioMed Eng Online 5:10

    Article  PubMed  Google Scholar 

  14. Ramon C, Schimpf PH, Haueisen J (2004) Effect of model complexity on EEG source localizations. Neurol Clin Neurophysiol 81:1–3

    Google Scholar 

  15. Bashar MR, Li Y, Wen P (2008) Influence of white matter inhomogeneous anisotropy on EEG forward computing. Australas Phys Eng Sci Med 31(2):122–130

    Article  PubMed  CAS  Google Scholar 

  16. Haueisen J, Tuch DS, Ramon C, Schimpf PH, Wedeen VJ, George JS, Belliveau JW (2002) The influence of brain tissue anisotropy on human EEG and MEG. NeuroImage 15:159–166

    Article  PubMed  CAS  Google Scholar 

  17. Haueisen J, Ramon C, Brauer H, Nowak H (2000) The influence of local tissue conductivity changes on the magnetoencephalogram and the electroencephalogram. Biomed Tech 45:211–214

    Article  CAS  Google Scholar 

  18. Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H (1997) Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44(8):727–735

    Article  PubMed  CAS  Google Scholar 

  19. Vatta F, Bruno P, Inchingolo P (2002) Improving lesion conductivity estimate by means of EEG source localization sensitivity to model parameter. Clin Neurophysiol 19(1):1–15

    Article  Google Scholar 

  20. Ferree TC, Eriksen KJ, Tucker DM (2000) Regional head tissue conductivity estimation for improved EEG analysis. IEEE Trans Biomed Eng 47(12):1584–1591

    Article  PubMed  CAS  Google Scholar 

  21. Ni A, Xiuzhen D, Yang G, Fu F, Tang C (2008) Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography. Comput Med Imaging Graph 32:409–415

    Article  PubMed  Google Scholar 

  22. Ollikainen JO, Vaukhonen M, Karjalainen PA, Kaipio JP (1999) Effects of local skull inhomogeneities on EEG source estimation. Med Eng Phys 21:143–154

    Article  PubMed  CAS  Google Scholar 

  23. He B, Wang Y, Wu D (1999) Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans Biomed Eng 46(10):1264–1268

    Article  PubMed  CAS  Google Scholar 

  24. Wen P (2000) Human head modelling and computation for the EEG forward problem. PhD dissertation, The Flinders University of South Australia, Australia

  25. Wen P, Li Y (2006) EEG human head modelling based on heterogeneous tissue conductivity. Australas Phys Eng Sci Med 29(3):235–240

    Article  PubMed  CAS  Google Scholar 

  26. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13:856–876

    Article  PubMed  CAS  Google Scholar 

  27. Shattuck DW, Leahy RM (2002) BrainSuite: an automated cortical surface identification tool. Med Image Anal 8(2):129–142

    Article  Google Scholar 

  28. Dogdas B, Shattuck DW, Leahy RM (2005) Segmentation of skull and scalp in 3-D human MRI using mathematical morphology. Hum Brain Mapp 26:273–285

    Article  PubMed  Google Scholar 

  29. Shattuck DW (2005) BrainSuite 2 Tutorial, online version. http://brainsuite.usc.edu

  30. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  PubMed  CAS  Google Scholar 

  31. Wolters CH (2003) Influence of tissue conductivity inhomogeneity and anisotropy on EEG/MEG based source localization in the human brain. PhD dissertation, University of Leipzig, Germany

  32. Si H (2004) TetGen. http://tetgen.berlios.de

  33. Baillet S, Mosher JC, Leahy RM (2004) Electromagnetic brain imaging using brainstorm. In: IEEE international symposium on biomedical engineering: macro to nano, pp 652–655

  34. Bashar MR, Li Y, Wen P (2008) Effects of white matter tissue conductivity on multi-layered spherical head model. In: IEEE proceedings of the international conference on electrical and computer engineering (ICECE’08), pp 59–64

  35. Bashar MR, Li Y, Wen P (2009) EEG analysis on skull conductivity perturbations using realistic head model. Lect Notes Comput Sci 5589:208–215

    Article  Google Scholar 

  36. Yan Y, Nunez PL, Hart RT (1991) Finite-element model of the human head: scalp potentials due to dipole sources. Med Biol Eng Comput 29:475–481

    Article  PubMed  CAS  Google Scholar 

  37. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  38. Meijis JW, Weier OW, Peters MJ, van Oosterom A (1989) On the numerical accuracy of the boundary element method. IEEE Trans Biomed Eng 36(10):1038–1049

    Article  Google Scholar 

  39. ASA Advanced Source Analysis, ANT software, The Netherland. www.ant-neuro.com

  40. Nicolas C, Xavier F, Bernard D, Bernard R, Jean PM, Pierre C (2004) Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using spherical three-dimensional resistor mesh model. Hum Brain Mapp 21:86–97

    Article  Google Scholar 

Download references

Acknowledgment

This project is partially supported by Australian Research Council Discovery Program DP0665216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Bashar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashar, M.R., Li, Y. & Wen, P. Effects of local tissue conductivity on spherical and realistic head models. Australas Phys Eng Sci Med 33, 233–242 (2010). https://doi.org/10.1007/s13246-010-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-010-0027-3

Keywords

Navigation