Skip to main content

Advertisement

Log in

Cortical Imaging on a Head Template: A Simulation Study Using a Resistor Mesh Model (RMM)

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The T1 head template model used in Statistical Parametric Mapping Version 2000 (SPM2), was segmented into five layers (scalp, skull, CSF, grey and white matter) and implemented in 2 mm voxels. We designed a resistor mesh model (RMM), based on the finite volume method (FVM) to simulate the electrical properties of this head model along the three axes for each voxel. Then, we introduced four dipoles of high eccentricity (about 0.8) in this RMM, separately and simultaneously, to compute the potentials for two sets of conductivities. We used the direct cortical imaging technique (CIT) to recover the simulated dipoles, using 60 or 107 electrodes and with or without addition of Gaussian white noise (GWN). The use of realistic conductivities gave better CIT results than standard conductivities, lowering the blurring effect on scalp potentials and displaying more accurate position areas when CIT was applied to single dipoles. Simultaneous dipoles were less accurately localized, but good qualitative and stable quantitative results were obtained up to 5% noise level for 107 electrodes and up to 10% noise level for 60 electrodes, showing that a compromise must be found to optimize both the number of electrodes and the noise level. With the RMM defined in 2 mm voxels, the standard 128-electrode cap and 5% noise appears to be the upper limit providing reliable source positions when direct CIT is used. The admittance matrix defining the RMM is easy to modify so as to adapt to different conductivities. The next step will be the adaptation of individual real head T2 images to the RMM template and the introduction of anisotropy using diffusion imaging (DI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babiloni F, Carducci F, Cincotti F, Del Gratta C, Roberti GM, Romani GL, Rossini PM, Babiloni C (2000) Integration of high resolution EEG and functional magnetic resonance in the study of human movement-related potentials. Methods Inf Med 39:179–182

    PubMed  CAS  Google Scholar 

  • Bayford RH, Gibson A, Tizzard A, Tidswell T, Holder DS (2001) Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool. Physiol Meas 22:55–64

    Article  PubMed  CAS  Google Scholar 

  • Baysal U, Haueisen J (2004) Use of a␣priori information in estimating tissue resistivities—application to human data in vivo. Physiol Meas 25:737–748

    Article  PubMed  Google Scholar 

  • Chauveau N, Franceries X, Doyon B, Rigaud B, Morucci JP, Celsis P (2004) Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model. Hum Brain Mapp 21:86–97

    Article  PubMed  Google Scholar 

  • Chauveau N, Morucci JP, Franceries X, Celsis P, Rigaud B (2005a) Resistor mesh model of a spherical head: part 1: applications to scalp potential interpolation. Med Biol Eng Comput 43:694–702

    Article  PubMed  CAS  Google Scholar 

  • Chauveau N, Morucci JP, Franceries X, Celsis P, Rigaud B (2005b) Resistor mesh model of a spherical head: part 2: a review of applications to cortical mapping. Med Biol Eng Comput 43: 703–711

    Article  PubMed  CAS  Google Scholar 

  • Darvas F, Ermer JJ, Mosher JC, Leahy RM (2006) Generic head models for atlas-based EEG source analysis. Hum Brain Mapp 27:129–143

    Article  PubMed  Google Scholar 

  • Ferree TC, Eriksen KJ, Tucker DM (2000) Regional head tissue conductivity estimation for improved EEG analysis. IEEE Trans Biomed Eng 47:1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Franceries X, Doyon B, Chauveau N, Rigaud B, Celsis P, Morucci JP (2003) Solution of Poisson’s equation in a volume conductor using resistor mesh models: application to event related potential imaging. J Appl Phys 93:3578–3588

    Article  CAS  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712

    Article  PubMed  Google Scholar 

  • Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293

    Article  PubMed  CAS  Google Scholar 

  • Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H (1997) Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44:727–735

    Article  PubMed  CAS  Google Scholar 

  • Haueisen J, Tuch DS, Ramon C, Schimpf PH, Wedeen VJ, George JS, Belliveau JW (2002) The influence of brain tissue anisotropy on human EEG and MEG. Neuroimage 15:159–166

    Article  PubMed  CAS  Google Scholar 

  • He B, Wang Y, Wu D (1999) Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans Biomed Eng 46:1264–1268

    Article  PubMed  CAS  Google Scholar 

  • He B, Zhang X, Lian J, Sasaki H, Wu D, Towle VL (2002) Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects’ magnetic resonance images. Neuroimage 16:564–576

    Article  PubMed  CAS  Google Scholar 

  • Helmholtz H (1853) Über einig Gesetze des Verteilung elektrischer Strome in Korperlischen Leitern mit Anwendung auf die tierisch-elektrischen Versuche. Ann Phys Chem 29:211–233

    Article  Google Scholar 

  • Latikka J, Kuurne T, Eskola H (2001) Conductivity of living intracranial tissues. Phys Med Biol 46:1611–1616

    Article  PubMed  CAS  Google Scholar 

  • Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487–1492

    Article  PubMed  CAS  Google Scholar 

  • Ramon C, Schimpf PH, Haueisen J (2004) Effect of model complexity on EEG source localizations. Neurol Clin Neurophysiol 2004:81

  • Ramon C, Haueisen J, Schimpf PH (2006) Influence of head models on neuromagnetic fields and inverse source localizations. Biomed Eng Online 5:55

    Article  PubMed  Google Scholar 

  • Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13:856–876

    Article  PubMed  CAS  Google Scholar 

  • Stok CJ (1987) The influence of model parameters on EEG/MEG single dipole source estimation. IEEE Trans Biomed Eng 34:289–296

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov VL, Arsenin VY (1977) Solutions of ill-posed problems, Wiley

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, van Drongelen W, Hecox KE, Towle VL, Frim DM, McGee AB, He B (2003) High-resolution EEG: cortical potential imaging of interictal spikes. Clin Neurophysiol 114:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89:223903–2239033

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Chauveau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauveau, N., Franceries, X., Aubry, F. et al. Cortical Imaging on a Head Template: A Simulation Study Using a Resistor Mesh Model (RMM). Brain Topogr 21, 52–60 (2008). https://doi.org/10.1007/s10548-008-0059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-008-0059-0

Keywords

Navigation