Skip to main content
Log in

EEG human head modelling based on heterogeneous tissue conductivity

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper studies the effect of heterogeneous tissue conductivity in a human head model for the EEG forward problem. Firstly, the tissue heterogeneity in conductivity was characterised from measured data in the literature. Then a method was developed to include this feature in modelling. Finally, the effect of tissue heterogeneity on EEG signals was studied. Based on these studies the paper concludes that the inclusion of tissue heterogeneity is significant in accurate head modelling for the EEG problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plonsey, R. & Fleming, D.,Bioelectric Phenomena, McGraw-Hill Book Company, New York, 1969.

    Google Scholar 

  2. Malmivuo, J. & R. Plonsey, R.,Bioelectromagnetism — Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York, 1995.

    Google Scholar 

  3. Awada, J. A.et al, “Computational aspects of finite element modelling in EEG source localisation”,IEEE Trans. Biomed. Eng., Vol. 44, No. 8, pp. 736–752, 1997.

    Article  CAS  PubMed  Google Scholar 

  4. Cuffin, B. N., “EEG dipole source localisation: using inverse solution for determining source locations”,IEEE Engineering in Medicine and Biology, pp. 118–122, Sep./Oct., 1998.

  5. Gutierrez, D. & Muravchik C. H., “Estimating brain conductivities and dipole source signal with EEG arrays,”IEEE Trans. Biomed. Eng., vol. 51, pp. 2113–2122, Dec. 2004.

    Article  PubMed  Google Scholar 

  6. Duck, F. A.,Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press Limited, 24–28 Oval Road, London NW1 7DX, UK, 1990.

    Google Scholar 

  7. Oostendorp T. F., Delbeke J. & Stegeman, D. F., “The conductivity of the human skull: Results of in vivo and in vitro measurements,”IEEE Trans. Biomed. Eng., vol. 47, pp. 1487–1492, Nov. 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Wen, P.,Human head modelling and computation for the EEG forward problem, PhD thesis, Flinders University of South Australia, Adelaide, Australia, 2001.

    Google Scholar 

  9. Ferree, T.C., Eriksen K. J. & Tucker, D. M., “Regional head tissue conductivity estimation for improved EEG analysis”,IEEE Trans. Biomed. Eng., Vol. 47, No. 12, pp. 1584–1593, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Meijs, J. W. H.et al, “The influence of various heads on EEG’s and MEG’s”, inFunctional Brain Imaging, Pfurtscheller, G. & Silva, F. H. L., Eds., Toronto, Canada: Huber, pp. 31–46, 1988.

    Google Scholar 

  11. Yan, Y., Nunez, P. L. & Hart, R. T., “Finite element model of the head: Scalp potentials due to dipole sources,”Med. Biol. Eng., Comp., Vol. 29, pp. 475–481, 1991.

    Article  CAS  Google Scholar 

  12. Lemieux, A. M. & Hand, J. W., “Calculation of electrical potentials on the surface of a realistic head model by finite differences”,Phys. Med. Biol. Vol. 41, pp. 1079–1091, 1996.

    Article  CAS  PubMed  Google Scholar 

  13. Law, S. K., “Thickness and resistivity variations over the upper surface of the human skull”,Brain Topography, Vol. 6, No. 2, pp. 99–109, 1993.

    Article  CAS  PubMed  Google Scholar 

  14. Wen, P., He, F. B. & Sammut, K., “The heterogeneous conductivity property of cranial tissues and its representation in numerical head model”,Australasian physical & engineering sciences in medicine, Vol.22, No. 3, pp. 92–98, 1999.

    CAS  Google Scholar 

  15. Goncalves S., de Munck, J. C., Verbunt J. P. A., Bijma F., Heethaar R., & da Silva F. L., “In vivo measurement of brain and skull resistivities using an EIT based method and realistic models for the head,”IEEE Trans. Biomed. Eng., Vol. 50, No. 6, pp. 754–767, June. 2003.

    Article  PubMed  Google Scholar 

  16. Ary, J. P., Klein, S. A. & Fender, D. H., “Location of sources of evoked scalp potentials: Corrections for skull and scalp thickness”,IEEE Trans. Biomed. Eng., Vol. 28, No. 6, pp. 447–452, 1981.

    Article  CAS  PubMed  Google Scholar 

  17. Cuffin, B. N., “Effects of local variations in skull and scalp thickness on EEG’s and MEG’s,”IEEE Trans. Biomed. Eng., Vol. 40, pp. 42–48, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Eshel, Y., Witman, S., Rosenfeld, M. & Abboud, S, “Correlation between skull thickness asymmetry and scalp potential estimated by a numerical model of the head”,IEEE Trans. Biomed. Eng., Vol. 42, No. 3, pp. 242–249, 1995.

    Article  CAS  PubMed  Google Scholar 

  19. Haueisen, J,et al, “Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head”,IEEE Trans. Biomed. Eng., Vol. 44, pp. 727–735, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Marin, G.et al, “Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models”,Human Brain Mapping, Vol. 6, pp. 250–269, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, P., Li, Y. EEG human head modelling based on heterogeneous tissue conductivity. Australas. Phys. Eng. Sci. Med. 29, 235–240 (2006). https://doi.org/10.1007/BF03178571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178571

Key words

Navigation