Skip to main content
Log in

Stress inducible cytosolic ascorbate peroxidase (Ahcapx) from Arachis hypogaea cell lines confers salinity and drought stress tolerance in transgenic tobacco

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Ascorbate peroxidase regulates toxic levels of hydrogen peroxide and catalyzes the reduction of H2O2 to water. A cDNA encoding cytosolic ascorbate peroxidase (Ahcapx) was isolated from the salt tolerant (ST) cell lines of Arachis hypogaea, that showed higher transcript level and 4.5 times higher total APX enzyme activity in the ST lines as compared to salt sensitive lines (SS). The transgenic tobacco plants overexpressing the Ahcapx gene were salinity and drought tolerant as compared to wild type (WT) plants. The transgenic plants had higher chlorophyll content and displayed enhanced germination rate under the abiotic stresses. In addition they also exhibited better photosynthetic efficiency, lower membrane damage and relatively higher values of ascorbate peroxidase activity under stress conditions. These results functionally validate a potential role of Ahcapx, as an important scavenger of reactive oxygen species useful in conferring stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen RD, Webb RP, Schake SA. Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med. 1997;23:473–9.

    Article  CAS  PubMed  Google Scholar 

  2. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article  CAS  PubMed  Google Scholar 

  3. Arnon DI. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol. 1949;24:1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Asada K. Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant. 1992;85:121–410.

    Article  Google Scholar 

  5. Asada Y, Miyake J. Photobiological hydrogen production. J Biosci Bioeng. 1999;88:1–6.

    Article  CAS  PubMed  Google Scholar 

  6. Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant. 2004;121:231–8.

    Article  CAS  PubMed  Google Scholar 

  7. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276–87.

    Article  CAS  PubMed  Google Scholar 

  8. Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu M. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 1998;138:27–34.

    Article  CAS  Google Scholar 

  9. Caverzan A, Passaia G, Barcellos RS, Werner RC, Lazzarotto F, Margis-pinheiro M. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol. 2012;35:1011–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dionisio-Sese M, Tobita S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998;135:1–9.

    Article  CAS  Google Scholar 

  11. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot. 2011;62:2599–613.

    Article  CAS  PubMed  Google Scholar 

  12. Fishel LA, Farnum MF, Mauro JM, Miller MA, Kraut J, Liu YJ. Compound I radical in site-directed mutants of cytochrome c peroxidase as probed by electron paramagnetic resonance and electron-nuclear double resonance. Biochemistry. 1991;30:1986–96.

    Article  CAS  PubMed  Google Scholar 

  13. Giacomelli L, Masi A, Ripoll DR, Lee MJ, van Wijk KJ. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol. 2007;65:627–44.

    Article  CAS  PubMed  Google Scholar 

  14. Gomez JM, Hernandez JA, Jimenez A, del Rio LA, Sevilla F. Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res. 1999;31:S11–8.

    Article  CAS  PubMed  Google Scholar 

  15. Gossett DR, Millhollon EP, Lucas MC, Banks SW, Marney MM. The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep. 1994;13:498–503.

    Article  CAS  PubMed  Google Scholar 

  16. Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta. 1997;203:460–9.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Gen. 2014;2014, ID701596.

    Google Scholar 

  18. Gupta AS, Webb RP, Holaday AS, Allen RD. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol. 1993;103:1067–73.

    PubMed Central  PubMed  Google Scholar 

  19. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Clarendon; 1985.

  20. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. London: Oxford University Press; 2000.

  21. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez JJA, Mullineaux P, Sevilla F. Tolerance of pea plants (Pisum sativum) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 2000;23:853–62.

    Article  CAS  Google Scholar 

  23. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A. A simple and general method for transferring genes into plants. Science. 1985;227:1229–31.

    Article  CAS  Google Scholar 

  24. Hunter T. The age of crosstalk: phosphorylation ubiquitination, and beyond. Mol Cell. 2007;28:730–8.

    Article  CAS  PubMed  Google Scholar 

  25. Jain M, Mathur G, Koul S, Sarin NB. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep. 2001;20:463–8.

    Article  CAS  Google Scholar 

  26. Jiang Y, Yang B, Harris NS, Deyholos MK. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot. 2007;58:3591–607.

    Article  CAS  PubMed  Google Scholar 

  27. Kersten B, Agarwal GK, Durek P, Neigenfind J, Schulze W, Walther D. Plant phosphoproteomics: an update. Proteomics. 2009;9:964–88.

    Article  CAS  PubMed  Google Scholar 

  28. Kwon SY, Jeong YZ, Lee HS, Kim JS, Cho KY, Allen RD. Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ. 2002;25:873–82.

    Article  Google Scholar 

  29. Lee Y, Ahmad R, Lee H, Kwak S, Shafqat MN, Kwon SY. Improved tolerance of Cu/Zn superoxide dismutase and ascorbate peroxidase expressing transgenic tobacco seeds and seedlings against multiple abiotic stresses international. J Agric Biol. 2013;15:171–85.

    Google Scholar 

  30. Liu ZB, Cai H, Han J, Zhou J. L. A novel thylakoid ascorbate peroxidase from Jatrophacurcas enhances salt tolerance in transgenic tobacco. Int J Mol Sci. 2014;15:171–85.

    Article  PubMed Central  Google Scholar 

  31. Lu Z, Liu D, Liu S. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2007;26:1909–17.

    Article  CAS  PubMed  Google Scholar 

  32. Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview. Arch Biochem Biophys. 2005;444:139–58.

    Article  CAS  PubMed  Google Scholar 

  33. Maxwell K, Johnson GN. Chlorophyll fluorescence- a practical guide. J Exp Bot. 2000;51:659–68.

    Article  CAS  PubMed  Google Scholar 

  34. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–8.

    Article  CAS  PubMed  Google Scholar 

  35. Mittova V, Guy M, Tal M, Volokita M. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot. 2004;55:1105–13.

    Article  CAS  PubMed  Google Scholar 

  36. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J. 2004;38:940–53.

    Article  CAS  PubMed  Google Scholar 

  37. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–80.

    CAS  Google Scholar 

  38. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406:731–4.

    Article  CAS  PubMed  Google Scholar 

  39. Rao MV, Paliyath G, Ormrod DP, Murr DO, Watkins CB. Influence of salisylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes. Plant Physiol. 1997;115:137–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  41. Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol. 2008;66:361–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sharma P, Dubey RS. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings expossed to toxic concentrations of aluminium. Plant Cell Rep. 2007;26:2027–38.

    Article  CAS  PubMed  Google Scholar 

  43. Singh N, Mishra A, Jha B. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol (NY). 2014;16:321–32.

    Article  CAS  Google Scholar 

  44. Temporini C, Calleri E, Massolini G, Caccialanza G. Integrated analytical strategies for the study of the phosphorylation and glycosylation in proteins. Mass Spectrom Rev. 2008;27:207–36.

    Article  CAS  PubMed  Google Scholar 

  45. Velikova VYI. Edreva A oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 2000;151:59–66.

    Article  CAS  Google Scholar 

  46. Wang Y, Wisniewski ME, Meilan R, Webb R, Fuchigami L, Boyer C. Overexpression of cytosolic ascorbate peroxidase in tomato (Lycopersicon esculentum) confers tolerance to chilling and salt stress. J Am Soc Hortic Sci. 2005;130:167–73.

    CAS  Google Scholar 

  47. Xu S, Ding H, Su F, Zhang A, Jiang M. Involvement of protein phosphorylation in water stress-induced antioxidant defense in maize leaves. J Integr Plant Biol. 2009;51:654–62.

    Article  CAS  PubMed  Google Scholar 

  48. Zamharir MG, Mardi M, Alavi SM, Hasanzadeh N, Nekouei MK, Zamanizadeh HR. Identification of genes differentially expressed during interaction of Mexican lime tree infected with Candidatus phytoplasma aurantifolia. BMC Microbiol. 2011;11:1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One. 2013;8(2), e57472.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

UPOE Project from JNU, UGC, CSIR, DST-FIST and DST-PURSE is acknowledged for the funding. We thank Dr MK Reddy for the kind gift of Arachis hypogaea library and APX probe. Groundnut Research Institute, Junagarh, is acknowledged for providing the seeds (Var JL-24) for carrying out the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Bhalla Sarin.

Additional information

Divya Chavhan Shrivastava and Arun Vincent Kisku contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, D.C., Kisku, A.V., Saxena, M. et al. Stress inducible cytosolic ascorbate peroxidase (Ahcapx) from Arachis hypogaea cell lines confers salinity and drought stress tolerance in transgenic tobacco. Nucleus 58, 3–13 (2015). https://doi.org/10.1007/s13237-015-0134-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-015-0134-3

Keywords

Navigation