Skip to main content
Log in

Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits?

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Endophytes infect living plant tissues without causing symptoms of disease. Indeed, many of them contribute to the resistance phenotype of their host. However, fungal endophytes are generally closely related to plant pathogens, fungi that either develop within living host tissue (biotrophic fungi) or that kill the host cells and then live in the dead tissue (necrotrophic fungi). We adopted a phylogenetic approach to investigate whether these strategies represent evolutionarily stable lifestyles and to elucidate their general phylogenetic relationships. We analysed 163 fungal strains for which we found information on the sequence of the 5.8S rRNA gene and the flanking internal transcribed spacer regions, the identity of the host plant and the concrete phenotypic outcome of the infection. A Maximum-Likelihood analysis combined with ancestral character mapping by maximum parsimony revealed that some fungal lineages had switched multiple times between a necrotrophic and an endophytic lifestyle. Ancestral character mapping indicated a minimum of four changes from an endophytic to a necrotrophic lifestyle, four changes in the opposite direction and eight changes among these lifestyles for which the direction could not be determined unambiguously. By contrast, biotrophs formed five clusters that did not contain necrotrophs or endophytes. Once biotrophy evolves there is apparently no regression to one of the other two lifestyles. We conclude that biotrophy usually represents a derived and evolutionarily stable trait, whereas fungi easily can switch between an endophytic and necrotrophic lifestyle at the evolutionary and even the ecological timescale. Future experimental studies should focus on the environmental or genetic changes that cause the rapid switches between these two phenotypically different lifestyles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrectsen BR, Bjorken L, Varad A et al (2010) Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3444

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Loayza P, White JF Jr, Torres MS et al (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS One 6:e16386

    Article  PubMed  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  PubMed  CAS  Google Scholar 

  • Andrew M, Barua R, Short SM, Kohn LM (2012) Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS One 7:e29943

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Wiley-Blackwell, West Sussex, pp 254–271

    Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for Ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  PubMed  Google Scholar 

  • Aschehoug ET, Metlen KL, Callaway RM, Newcombe G (2012) Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 93:3–8

    Article  PubMed  Google Scholar 

  • Bärlocher F (2009) Reproduction and dispersal in aquatic hyphomycetes. Mycoscience 50:3–8

    Article  Google Scholar 

  • Begoude BAD, Slippers B, Wingfield MJ, Roux J (2011) The pathogenic potential of endophytic Botryosphaeriaceous fungi on Terminalia species in Cameroon. For Pathol 41:281–292

    Article  Google Scholar 

  • Brown JKM, Tellier A (2011) Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol 49:345–367

    Article  PubMed  CAS  Google Scholar 

  • Burdon JJ (1993) The structure of pathogen populations in natural plant communities. Annu Rev Phytopathol 31:305–323

    Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves—from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Choi O, Choi O, Kwak Y-S, Kim J, Kwon J-H (2012) Spot anthracnose disease caused by Colletotrichum gloeosporioides on tulip tree in Korea. Mycobiology 40:82–84

    Article  PubMed  Google Scholar 

  • Clay K (1991) Parasitic castration of plants by fungi. Trends Ecol Evol 6:162–166

    Article  PubMed  CAS  Google Scholar 

  • Cobb R, Meentemeyer RK, Rizzo DM (2010) Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology 91:327–333

    Article  PubMed  Google Scholar 

  • Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113

    Article  PubMed  CAS  Google Scholar 

  • Dickman MB, Figueiredo P (2011) Comparative pathobiology of fungal pathogens of plants and animals. PLoS Pathogens 7:e1002324

    Article  PubMed  CAS  Google Scholar 

  • Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. MPMI 16:580–587

    Article  PubMed  CAS  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  PubMed  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  PubMed  CAS  Google Scholar 

  • Frickey T, Weiller G (2007) Analyzing microarray data using CLANS. Bioinformatics 23:1170–1171

    Article  PubMed  CAS  Google Scholar 

  • Frölich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • García-Guzmán G, Morales E (2007) Life-history strategies of plant pathogens: distribution patterns and phylogenetic analysis. Ecology 88:589–596

    Article  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tall grass prairie of northern Oklahoma. Fungal Divers 47:19–27

    Article  Google Scholar 

  • Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annu Rev Phytopathol 40:13–43

    Article  PubMed  CAS  Google Scholar 

  • Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA 104:4979–4983

    Article  PubMed  CAS  Google Scholar 

  • Glenn A, Bodri MS (2012) Fungal endophyte diversity in Sarracenia. PLoS One 7(3):e32980

    Article  PubMed  CAS  Google Scholar 

  • Goodwin SB, Ben M'Barek S, Dhillon B, Wittenberg AHJ, Crane CF et al (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genetics 7:e1002070

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Mendgen K (2001) Signal and nutrient exchange at biotrophic plant-fungus interfaces. Curr Opin Plant Biol 4:322–327

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  PubMed  CAS  Google Scholar 

  • Heller J, Tudzynski P (2011) Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 49:369–390

    Article  PubMed  CAS  Google Scholar 

  • Herre EA, Mejia LC, Kyllo DA et al (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  • Hersh MH, Vilgalys R, Clark JS (2012) Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93:511–520

    Article  PubMed  Google Scholar 

  • Horbach R, Navarro-Quesadac AR, Knoggec W, Deisinga HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    Article  PubMed  CAS  Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ, Prihastuti H (2009) Colletotrichum: a catalogue of confusion. Fungal Divers 39:1–17

    Google Scholar 

  • Jarosz AM, Davelos AL (1995) Effects of disease in wild plant populations and the evolution of pathogen aggressiveness. New Phytol 129:371–387

    Article  Google Scholar 

  • Johnston PR, Sutherland PW, Joshee S (2006) Visualising edophytic fungi within leaves by detection (1 → 3)-ß-d-glucans in fungal cell walls. Mycologist 20:159–162

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Junker C, Draeger S, Schulz B (2012) A fine line—endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol 5:657–662

    Article  Google Scholar 

  • Kemen E, Jones JDG (2012) Obligate biotroph parasitism: can we link genomes to lifestyles? Trends Plant Sci 17:448–457

    Article  PubMed  CAS  Google Scholar 

  • Kleczewski NM, Bauer JT, Bever JD, Clay K, Reynolds HL (2012) A survey of endophytic fungi of switchgrass (Panicum virgatum) in the Midwest, and their putative roles in plant growth. Fungal Ecol 5:521–529

    Article  Google Scholar 

  • Kogel K-H, Franken P, Hueckelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kolb A (2012) Differential effects of herbivory and pathogen infestation on plant population dynamics. Plant Ecol 213:315–326

    Article  Google Scholar 

  • Kriel W-M, Swart WJ, Crous PW (2000) Foliar endophytes and their interactions with host plants, with specific reference to the Gymnospermae. Adv Bot Res 33:1–34

    Article  Google Scholar 

  • Kwon J-H, Kang D-W, Kwak Y-S, Kim J (2012) An outbreak of leaf spot caused by Corynespora cassiicola on Korean raspberry in Korea. Plant Dis 96:762

    Article  Google Scholar 

  • Laluk K, Mengiste T (2010) Necrotroph attacks on plants: wanton destruction or covert extortion? The Arabidopsis Book 8:e0136. doi:10.1199/tab.0136

    PubMed  Google Scholar 

  • Lehtonen P, Helander M, Siddiqui SA, Lehto K, Saikkonen K (2006) Endopyhtic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biol Lett 2:620–623

    Article  PubMed  Google Scholar 

  • Lin S-H, Huang S-L, Li Q-Q, Hu C-J, Fu G, Qin LP, Ma Y-F, Xie L, Cen Z-L, Yan W-H (2011) Characterization of Exserohilum rostratum, a new causal agent of banana leaf spot disease in China. Australas Plant Pathol 40:246–259

    Article  Google Scholar 

  • Loro M, Valero-Jiménez CA, Nozawa S, Márquez LM (2012) Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. J Arid Environ 85:46–55

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org

  • Manners JM, Gay JL (1983) The host—parasite interface and nutrient transfer in biotrophic parasitism. In: Callow JA (ed) Biochemical plant pathology. Wiley, New York, pp 163–195

    Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  PubMed  CAS  Google Scholar 

  • Martin SH, Steenkamp ET, Wingfield MJ, Wingfield B (2013) Mate-recognition and species boundaries in the ascomycetes. Fungal Divers 58:1–12

    Article  Google Scholar 

  • Meister B, Krauss J, Harri SA, Schneider MV, Muller CB (2006) Fungal endosymbionts affect aphid population size by reduction of adult life span and fecundity. Basic Appl Ecol 7:244–252

    Article  Google Scholar 

  • Mejia LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    Article  PubMed  CAS  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:13.1–13.28

    Article  CAS  Google Scholar 

  • Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monographs 81:429–441

    Article  Google Scholar 

  • Moricca S, Ragazzi A (2011) The Holomorph Apiognomonia quercina/Discula quercina as a Pathogen/Endophyte in Oak. Springer, Dordrecht

    Google Scholar 

  • Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52:46–58

    Google Scholar 

  • O'Connell RJ, Panstruga R (2006) Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718

    Article  PubMed  CAS  Google Scholar 

  • Oliver RP, Solomon PS (2010) New developments pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:415–419

    Article  PubMed  CAS  Google Scholar 

  • Park Y-H, Lee S-G, Ahn DJ, Kwon TR, Sang Un Park SU, Lim H-S, Bae H (2012) Diversity of fungal endophytes in various tissues of Panax ginseng Meyer cultivated in Korea. J Ginseng Res 36:211–217

    Article  PubMed  Google Scholar 

  • Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artefact? Frontiers Plant Sci 2:100

    Google Scholar 

  • Peršoh D (2013) Factors shaping community structure of endophytic fungi—evidence from the Pinus-Viscum-system. Fungal Divers. doi:10.1007/s13225-013-0225-x

    Google Scholar 

  • Peršoh D, Segert J, Zigan A, Rambold G (2013) Fungal community composition shifts along a leaf degradation gradient in a European beech forest. Plant Soil 362:175–186. doi:10.1007/s11104-012-1271-y

    Article  CAS  Google Scholar 

  • Petrini O, Sieber T, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    Article  PubMed  CAS  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V et al (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecol 53:579–590

    Article  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Sakalidis ML, Hardy GES, Burgess TI (2011) Endophytes as potential pathogens of the baobab species Adansonia gregorii: a focus on the Botryosphaeriaceae. Fungal Ecol 4:1–14

    Article  Google Scholar 

  • Sanchez-Marquez S, Bills GF, Herrero N, Zabalgogeazcoa I (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297

    Article  Google Scholar 

  • Schardl CL, Scott B, Florea S, Zhang D-X (2009) Epichloë endophytes: clavicipitaceous symbionts of grasses. In: Deising H (ed) The mycota plant relationships. Springer, Berlin, pp 275–305

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sette LD, Passarini MRZ, Delarmelina C, Salati F, Duarte MCT (2006) Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Microbiol Biotechnol 22:1185–1195

    Article  CAS  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Sieber TN, Sieber-Canavesi F, Petrini O, Ekramoddoullah AKM, Dorworth CE (1991) Characterization of Canadian and European Melanconium from some Alnus species by morphological, cultural, and biochemical studies. Can J Bot 69:2170–2176

    Article  Google Scholar 

  • Silva DN, Talhinhas P, Varzea V, Cai L, Paulo OS, Batista D (2012) Application of the Alm2/MATlocus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia 104:396–409

    Article  PubMed  CAS  Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106

    Article  Google Scholar 

  • Sowley ENK, Dewey FM, Shaw MW (2010) Persistent, symptomless, systemic, and seed-borne infection of lettuce by Botrytis cinerea. Eur J Plant Pathol 126:61–71

    Article  Google Scholar 

  • Spanu PD, Abbott JC, Amselem J et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546

    Article  PubMed  CAS  Google Scholar 

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas fir. Can J Bot 65:2614–2621

    Article  Google Scholar 

  • Stone JK (1988) Fine structure of latent infections by Rhabdocline parkeri on Douglas-fir, with observations on uninfected epidermal cells. Can J Bot 66:45–54

    Article  Google Scholar 

  • Swinfield T, Lewis OT, Bagchi R, Freckleton RP (2012) Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol Evol 2:1408–1413

    Article  PubMed  Google Scholar 

  • Talbot NJ (2010) Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants? PLoS Biology 8:e1000308

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scotta B (2006) Reactive oxygen species play a role in regulating a fungus—perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Takemoto D, Chujo T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15:462–468

    Article  PubMed  CAS  Google Scholar 

  • Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ (2008) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57:562–572

    Article  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M et al (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Viret O, Petrini O (1994) Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda). Mycol Res 98:423–432

    Article  Google Scholar 

  • Wang Y, Dai C-C (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  • Wang Z, Johnston PR, Yang ZL, Townsend JP (2009) Evolution of reproductive morphology in leaf endophytes. PLoS One 4:e4246

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180

    Article  PubMed  CAS  Google Scholar 

  • White JF, Bacon CW (2012) The secret world of endophytes in perspective. Fungal Ecol 5:287–288

    Article  Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yan J, Wu PS, Du HZ, Zhang QE (2011) First report of black spot caused by Colletotrichum gloeosporioides on paper Mulberry in China. Plant Dis 95:880

    Article  Google Scholar 

  • Yu X, Zhang WM, Zhao BT, Shi XP, Gu GP, Sun LJ (2011) First report of Alternaria alternata causing blight disease of Euphorbia lathyris in China. J Plant Pathol 93:S4.63–S4.89

    Google Scholar 

  • Yuan Z-l, Zhang C-l, Lin F-c (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Divers 53:1–221

    Article  PubMed  CAS  Google Scholar 

  • Zhuang W-Y, Liu C-Y (2012) What an rRNA secondary structure tells about phylogeny of fungi in Ascomycota with emphasis on evolution of major types of ascus. PLoS One 7:e47546

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kari Saikkonen and Maryam Rafiqi as well as an anonymous associate editor and referee for their critical reading of earlier versions of this manuscript, Irma Acosta-Calixto for her assistance with preparing the tables, and Rigoberto Vicencio Pérez Ruiz for his technical advice on the use of the Nucleotide and Blast databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela García-Guzmán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cluster II included only biotrophic species from the Erysiphaceae family. Names comply with the original sequence depositions. (DOCX 317 kb)

Fig. S2

Cluster IV grouped species from the Ustilaginaceae. Names comply with the original sequence depositions. (DOCX 148 kb)

Fig. S3

Cluster V included species from the Tilletiaceae family. Names comply with the original sequence depositions. (DOCX 102 kb)

Fig. S4

Cluster VI included biotrophic pathogens from the Uredinales. Names comply with the original sequence depositions. (DOCX 111 kb)

Supplementary Table

(XLS 73 kb)

ESM 1

(DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaye, L., García-Guzmán, G. & Heil, M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits?. Fungal Diversity 60, 125–135 (2013). https://doi.org/10.1007/s13225-013-0240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0240-y

Keywords

Navigation