Skip to main content
Log in

Reproduction and dispersal in aquatic hyphomycetes

  • Review
  • Published:
Mycoscience

Abstract

The conidia of aquatic hyphomycetes were discovered by C.T. Ingold some 60 years ago. They are typically multiradiate or sigmoid, relatively fragile, and produced in enormous numbers. Their main function seems to be the rapid colonization of a periodic superabundance of leaves common in most streams. Conidia are unlikely to survive adverse conditions and to be responsible for the apparently worldwide distribution of many aquatic hyphomycete species. It has repeatedly been suggested that meiospores are responsible for long-distance dispersal; however, to date, only some 10% of described species have been connected to a teleomorph. To determine additional connections, and to document the potential role of meiospores in long-distance dispersal of aquatic hyphomycetes, the application of modern molecular methods is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasiou CJ (1964) Some aquatic Fungi Imperfecti from Hawaii. Pac Sci 18:202–20

    Google Scholar 

  • Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102

    Article  Google Scholar 

  • Baldy V, Chauvet E, Charcosset J-Y, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–36

    Article  Google Scholar 

  • Bärlocher F (1981) Fungi on the food and in the faeces of Gammarus pulex. Trans Br Mycol Soc 76:14–19

    Google Scholar 

  • Bärlocher F (1982) Conidium production from leaves and needles in four streams. Can J Bot 60:1487–1494

    Google Scholar 

  • Bärlocher F (1991) Intraspecific hyphal interactions among aquatic hyphomycetes. Mycologia 83:82–88

    Article  Google Scholar 

  • Bärlocher F (1992a) Research on aquatic hyphomycetes: historical background and overview. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin & New York, pp 1–15

    Google Scholar 

  • Bärlocher F (1992b) Community organization. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin & New York, pp 38–76

    Google Scholar 

  • Bärlocher F (2000) Water-borne conidia of aquatic hyphomycetes: seasonal and yearly patterns in Catamaran Brook, New Brunswick, Canada. Can J Bot 78:157–167

    Article  Google Scholar 

  • Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem. Taylor & Francis, Boca Raton, pp 39–59

    Google Scholar 

  • Bärlocher F (2006) Fungal endophytes in submerged roots. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin & New York, pp 179–190

    Chapter  Google Scholar 

  • Bärlocher F (2007) Decomposition and fungal community structure in aquatic environments. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology, 3rd edn. American Society for Microbiology (ASM) Press, Washington, DC, pp 469–478

    Google Scholar 

  • Bärlocher F, Brendelberger H (2004) Filtration of aquatic hyphomycete spores by a benthic suspension feeder. Limnol Oceanogr 49:2292–2296

    Google Scholar 

  • Bärlocher F, Graça MAS (2002) Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw Biol 47:1123–1135

    Article  Google Scholar 

  • Bärlocher F, Kendrick B (1974) Dynamics of the fungal population of leaves in streams. J Ecol 62:761–791

    Article  Google Scholar 

  • Bärlocher F, Nikolcheva LG, Wilson KP, Williams DD (2006). Fungi in the hyporheic zone of a springbrook. Microb Ecol 52:708–715

    Article  PubMed  Google Scholar 

  • Baschien C, Marvanová L, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwigia 83:311–352

    Article  Google Scholar 

  • Belliveau MJR, Bärlocher F (2005) Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycol Res 109:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Boddy L (1993) Cord-forming fungi: warfare strategies and other ecological aspects. Mycol Res 97:641–655

    Google Scholar 

  • Boddy L, Jones TH (2007) Mycelial responses in heterogeneous environments: parallels with macroorganisms. In: Gadd GM, Watkinson SC, Dyer PS (eds) Fungi in the environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Campbell J, Shearer C, Marvanová L (2006) Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycol Res 110:1025–1033

    Article  PubMed  Google Scholar 

  • Carter MD, Suberkropp K (2004) Respiration and annual fungal production associated with decomposing leaf litter in two streams. Freshw Biol 49:1112–1122

    Article  Google Scholar 

  • Chauvet E, Suberkropp K (1998) Temperature and sporulation of aquatic hyphomycetes. Appl Environ Microbiol 64:1522–1525

    PubMed  CAS  Google Scholar 

  • Dang CK, Gessner MO, Chauvet E (2007) Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia 99:24–32

    Article  PubMed  Google Scholar 

  • Dettman JR, Jacobson DJ, Taylor JW (2006) Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 98:436–446

    Article  PubMed  Google Scholar 

  • Fang W, Bidochka MJ (2006) Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycol Res 110:1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. BioScience 54:777–784

    Article  Google Scholar 

  • Ferreira V, Gulis V, Graça MAS (2006) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia (Berl) 49:718–729

    Article  Google Scholar 

  • Findlay SEG, Arsuffi TL (1989) Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshw Biol 21:261–269

    Article  Google Scholar 

  • Gessner MO (1997) Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica 13:33–44

    Google Scholar 

  • Gessner MO (2005) Ergosterol as a measure of fungal biomass. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition. Springer, Dordrecht, pp 189–195

    Chapter  Google Scholar 

  • Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817

    Article  Google Scholar 

  • Gessner MO, Chauvet E (1997) Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol Oceanogr 42:496–505

    CAS  Google Scholar 

  • Gessner MO, Thomas M, Jean-Louis A-M, Chauvet E (1993) Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream. Mycol Res 97:163–172

    Google Scholar 

  • Gessner MO, Bärlocher F, Chauvet E (2003) Qualitative and quantitative analyses of aquatic hyphomycetes in streams. Fungal Divers Res Ser 10:127–157

    Google Scholar 

  • Goos RD (1970) In vitro sporulation in Actinospora megalospora. Trans Br Mycol Soc 55:335–337

    Google Scholar 

  • Gulis V (2001) Are there any substrate preferences in aquatic hyphomycetes? Mycol Res 105:1088–1093

    Article  Google Scholar 

  • Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134

    Article  Google Scholar 

  • Gulis V, Rosemond AD, Suberkropp K, Weyers HS, Benstead JP (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurztman CP, Larsson K-H, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao Y-J, Zhan N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25:339–417

    Article  Google Scholar 

  • Iqbal SH, Webster J (1973) Aquatic hyphomycete spora of the River Exe and its tributaries. Trans Br Mycol Soc 61:331–346

    Google Scholar 

  • Kaushik NK, Hynes HBN (1971) The fate of the dead leaves that fall into streams. Arch Hydrobiol 68:465–515

    Google Scholar 

  • Kearns SG, Bärlocher F (2008) Leaf surface roughness influences colonization success of aquatic hyphomycete conidia. Fungal Ecol 1(1):13–18

    Article  Google Scholar 

  • Kempt ED, Maamri A, Bärlocher F (2002) Germination of settled and suspended conidia of aquatic hyphomycetes. Sydowia 53:200–210

    Google Scholar 

  • Khan MA (1987) Interspecies interactions in aquatic hyphomycetes. Bot Mag Tokyo 100:295–303

    Article  Google Scholar 

  • Krauss G, Sridhar KR, Bärlocher F (2005) Aquatic hyphomycetes and leaf decomposition in contaminated groundwater wells in Central Germany. Arch Hydrobiol 162:417–429

    Article  CAS  Google Scholar 

  • Maharning AR, Bärlocher F (1996) Growth and reproduction in aquatic hyphomycetes. Mycologia 88:80–88

    Article  Google Scholar 

  • Newell SY, Fallon RD (1991) Toward a method for measuring instantaneous fungal growth rates in field samples. Ecology 72:1547–1559

    Article  Google Scholar 

  • Nikolcheva LG, Bärlocher F (2004) Taxon-specific primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–50

    Article  Google Scholar 

  • Nikolcheva LG, Bourque T, Bärlocher F (2005) Fungal diversity during initial stages of leaf decomposition in a stream. Mycol Res 109:246–253

    Article  PubMed  Google Scholar 

  • Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5177–5182

    Article  CAS  Google Scholar 

  • Pascoal C, Cassio F, Marcotegui A, Sanz B, Gomes P (2005a) Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784–797

    Article  Google Scholar 

  • Pascoal C, Cássio F, Marvanová L (2005b) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Arch Hydrobiol 162:481–496

    Article  Google Scholar 

  • Ranzoni FV (1979) Aquatic hyphomycetes from Hawaii. Mycologia 71:786–795

    Article  Google Scholar 

  • Raviraja NS, Nikolcheva LG, Bärlocher F (2005) Diversity of aquatic hyphomycete conidia assessed by microscopy and by DGGE. Microb Ecol 49:301–307

    Article  PubMed  CAS  Google Scholar 

  • Shearer CA (1992) The role of woody debris in the life cycles of aquatic hyphomycetes. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin & New York, pp 77–98

    Google Scholar 

  • Shearer CA, Lane L (1983) Comparison of three techniques for the study of aquatic hyphomycete communities. Mycologia 74:498–508

    Article  Google Scholar 

  • Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequencedata on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54

    Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Science 356:428–531

    Google Scholar 

  • Sokolski S, Piché Y, Chauvet E, Bérubé JA (2006) A fungal endophyte of black spruce (Picea mariana) needles is also an aquatic hyphomycete. Mol Ecol 15:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Sridhar KR, Bärlocher F (1994) Viability of aquatic hyphomycete conidia in foam. Can J Bot 72:106–110

    Article  Google Scholar 

  • Sridhar KR, Bärlocher F (1997) Water chemistry and sporulation by aquatic hyphomycetes. Mycol Res 101:591–596

    Article  CAS  Google Scholar 

  • Sridhar KR, Bärlocher F (2000) Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams. Appl Environ Microbiol 66:1112–1119

    Article  Google Scholar 

  • Sridhar KR, Krauss G, Bärlocher F, Raviraja NS, Wennrich R, Baumbach R, Krauss G-J (2001) Decomposition of alder leaves in two heavy-metal polluted streams in central Germany. Aquat Microb Ecol 26:73–80

    Article  Google Scholar 

  • Suberkropp K (1984) Effect of temperature on seasonal occurrence of aquatic hyphomycetes. Trans Br Mycol Soc 82:53–62

    Google Scholar 

  • Suberkropp K (1991) Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycol Res 98:843–850

    Google Scholar 

  • Suberkropp K (1995) The influence of nutrients on fungal growth, productivity, and sporulation during leaf breakdown in streams. Can J Bot 73:S1361–S1369

    Article  Google Scholar 

  • Suberkropp K (1997) Annual production of leaf-decaying fungi in a woodland stream. Freshw Biol 38:169–178

    Article  Google Scholar 

  • Suberkropp K (2001) Fungal growth, production, and sporulation during leaf decomposition in two streams. Appl Environ Microbiol 67:5063–5068

    Article  PubMed  CAS  Google Scholar 

  • Suberkropp K, Chauvet E (1995) Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76:1433–1445

    Article  Google Scholar 

  • Suberkropp K, Gessner MO (2005) Acetate incorporation into ergosterol to determine fungal growth rates and production. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition. Springer, Dordrecht, pp 197–202

    Chapter  Google Scholar 

  • Suberkropp K, Klug MJ (1976) Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–719

    Article  Google Scholar 

  • Suberkropp K, Weyers H (1996) Application of fungal and bacterial production methodologies to decomposing leaves in streams. Appl Environ Microbiol 62:1610–1615

    PubMed  CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Biol 361:1947–1963

    Article  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1991a) Changes in concentration of aquatic hyphomycete spores in Lees Creek, ACT, Australia. Mycol Res 95:178–183

    Article  Google Scholar 

  • Thomas K, Chilvers GA, Norris RH (1991b) A dynamic model of fungal spora in a freshwater stream. Mycol Res 95:184–188

    Google Scholar 

  • Treton C, Chauvet E, Charcosset JY (2004) Competitive interaction between two aquatic hyphomycete species and increase in leaf litter breakdown. Microb Ecol 48:439–446

    Article  PubMed  CAS  Google Scholar 

  • Webster J (1959) Experiments with spores of aquatic hyphomycetes. I. Sedimentation, and impaction on smooth surfaces. Ann Bot 23:595–611

    Google Scholar 

  • Webster J (1992) Anamorph-teleomorph relationships. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin & New York, pp 99–117

    Google Scholar 

  • Webster J, Davey RA (1984) Sigmoid conidial shape in aquatic fungi. Trans Br Mycol Soc 83:43–52

    Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution, and ecology of conidial fungi in freshwater habitats. In: Cole GT, Kendrick B (eds) Biology of conidial fungi, vol I. Academic Press, New York, pp 295–355

    Google Scholar 

  • Weigelhofer G, Waringer JA (1994) Allochthonous input of coarse particulate organic matter (CPOM) in a first to fourth order Austrian forest stream. Int Rev Gesamten Hydrobiol 79:461–471

    Article  Google Scholar 

  • Weyers H, Suberkropp K (1996) Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. J N Am Benthol Soc 15:408–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bärlocher.

About this article

Cite this article

Bärlocher, F. Reproduction and dispersal in aquatic hyphomycetes. Mycoscience 50, 3–8 (2009). https://doi.org/10.1007/s10267-008-0449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-008-0449-x

Key words

Navigation